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Abstract—This paper investigates the asymptotic structure of study of this problem. The present work provides an analyti-
the channel vector quantization codebook for limited-feeblack cally tractable framework and focuses on the high resaiutio
multiple-input single-output fading channels. The desigrcriteria structure of the channel vector quantization codebook.
is to minimize the average transmission power subject to a - . . . .
target outage probability. First, we consider the design ofcalar The system setting considered in this pap(_er IS as fo_llovys.
channel magnitude quantization codebook and prove that the The BS has)M antennas and the feedback link capacity is
asymptotically optimal quantization levels are uniformly spaced B bits per fading block. We first focus on the scalar channel
in dB'ngle.d'Sltqu ?Ptimalityldoes not depend OT thte the ghgnhe magnitude quantization codebook and show that the asymp-
magnitude distribution, as long as some regularity conditns ; ; ; it .
are satisfied. It is shown that the gradient of the objective totically .Optlmal magnitude quantization Ievgls are umiiy
function (the average transmission power) with respect to i&ch spaced_ |n_ dB scale. We_ Sh(_)W that the gra_d|ent of the average
quantization levels diminishes asN, /% as the number of the transmission power (objective function) with respect talsu
levels N, tends to infinity. We then form a product channel vector quantization levels diminishes al\ﬁp_?’/2 as the quantization
guantization codebook comprising a uniform (in dB) channel codebook sizeN,, tends to infinity.
magnitude quantization codebook and a spatially uniform clan- We next form a product channel vector quantization code-

nel direction quantization codebook and derive the optimalbit- book . tiall if directi tizati
sharing law between the two codebooks. It is shown that the 00K comprising a spatally ‘uniform diréction quantizatio

asymptotically optimal number of direction quantization bits is codebook and a uniform (in dB) magnitude quantization
M —1 times the number of channel magnitude quantization bits, codebook and study its asymptotic performance. It is shown
where M is the number of base station antennas. The paper.also that, for a fixed target outage probability and in the asynipto
shows that as the target outage probability decreases, molits  regime of B — oo, the number of direction quantization bits
should be allocated to magnitude quantization. . . . o .
is M — 1 times the number of magnitude quantization bits.

Moreover, as the target outage probability decreases nitsre b
should be allocated to magnitude quantization.

The use of multiple antennas at the base-station (BS) can
considerably improve the performance of the wireless commu Il. CHANNEL MAGNITUDE QUANTIZATION
nication links. The realization of these improvements haave  Consider a SISO channkle C. The input signak and the
typically requires channel state information (CSI) at tf& B1  output signal- are related as

ractical limited-feedback systems, the remote terminakd RN
Fo guantize the channel stati/a and send the channel infanmati r=vPhhs+z, (1)
back to the BS via rate-limited feedback links. where E[|s|?]=1, P(h) is the transmission power, and ~

While the channel quantization problem has been extefA/(0,1) is the receiver noise. Consider a perfect CSI sys-
sively studied in the literature, most of the works in thisem where the BS is required to satisfy a target SR
field focus on either channel direction quantization [1],§2 at the receiver. For this purpose, the BS needs to perform
channel magnitude quantization [3], [4], but not both. For @ownlink power control by setting its transmission power to
practical limited-feedback system to approach the perdme P (h)=+,/|h|?>. To perform such power control in a limited
of the perfect CSI system, however, both channel directimh afeedback system, the receiver should quantize and feedback
magnitude information are required [5]. The design of joirjk|. The BS then sets its transmission power based on the
channel magnitude and direction quantization codeboadkes tquantized channel magnitude.
main subject of this paper. We are interested in optimizing the power control function

The joint channel magnitude and direction quantizaticend the magnitude quantization levels such that the average
problem is highly complex in general [6]. This paper focusdsansmission power is minimized for a given target outage
on a specific problem formulation where the average totatobability. If we fix the magnitude quantization levels,ist
transmit power is minimized subject to a fixed outage prdbabnot difficult to show that the optimal power control function
ity constraint. The outage criterion is an essential pemforce is a step-like function as shown in Fig. 1. Note that the figure
metric for the fixed-rate delay-limited type of communioat. shows the quantization of the random variable = |h|?
In one of our earlier works [5], we presented a numericaistead of|h| as the former is more tractable analytically.

|I. INTRODUCTION



J,% A specific set of geometric quantization levels is effeciive

the gradient of the objective functioR in (2) with respect

to the quantization levels iv(9)(r) is close to zero. Using

the Taylor expansion on the approximation error in (5), it is
. possible to obtain the following bound on the gradient:
- Lemma 1. For the geometric sequend&?) (r), we have

P(h)

>

1
O Vi Y2 o Y1 Yn, YV =|RP | Vyw Pl < Eu\/Np(r ~ 1)+ D, (8)
Fig. 1. Optimal transmission powe?(h) for N,, fixed quantization levels Wherey is an upper bound of(y) for all y > 0, and

which are used for quantizing” = |h|. N, is the quantization codebook 1 0o
=] % (0= - [ rivar)
y
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We can now formulate the quantization codebook optimiza- ©)

. S L It is clear from (8) that the geometric solution is more
tion problem as that of optimizing the quantization levels : . N .
appropriate for smooth magnitude distribution functioies,

ﬁgng?ﬁiééi;nyNéwgr ;'l% ble. eilr?te'sézz gsormallzed avera€yistributions with small . In the rest of the paper, we
P P assume that is bounded, and assume a number of additional

1 Np Q regularity conditions on the channel magnitude distritnuti
P(Y) = —E[P(h)] = ) ==, (2) function:
To n=1 U1 1) f(y) is a positive differentiable function with bounded
whereY = {y1,y2,---,y,,} is the quantization codebook, derivative overy > 0.
N, is the codebook siz&),=Fy (ynt+1)—Fy (yn), Fy(-) is 2) k=limy_oo —f(y)/fi (y) exists andk # 0.
the CDF ofy %f 12, andy, ., def o 3) E[Y] is bounded and therefoiém, .. yf(y) = 0.

Now, let p,.: denote the fixed target outage probability. We now use the bound (8) to determine the optimal scaling
It is easy to see that the outage probability fixes the firef ~ as a function ofV,,. The idea is to set appropriately, so

guantization level as follows: that both terms in (8) go to zero &8, — oo. Sincer > 1,
def 1 we can express as a function ofN, asr = 1+L(N,),
y1=0a = Fy " (Pout)- (3)  where£(NV,) is an arbitrary positive function. DefigN,,) =

In order to minimize the average transmission power withlog £(N,)/log Ny, so thatr = 1 + N, ) Also, let
respect to the quantization levels, we take the derivative ©(00)=1limy, oo ((Np).

P(Y) with respect tay,,, 2 < n < N, and set it to zero. This  To achieve|VP|| — 0 in (8), both \/N,(r — 1)> and D
leads to the following equation: should go to zero. From (9), fob — 0, we needy, =

N (N2) and applying
fY(yn) |: - 2
yn—l y’n yn

1 1 ] Qn arNe=! — co. Substitutingr = 1 + Np_c
where fy (+) is the PDF of Y. By approximating

(4)  L'Hopital's rule, we get a necessary conditigfio) < 1.
Now, consider the first term in (8), sincgdoo) < 1 and
r=1+ NP_C(NP), we see that the first term cannot go to
w2 Ly (Un) Wns1 — Un), (5) zero faster thar(—)(Np_3/2). Since||VP|| is bounded by the
) ) magnitude of the first term in (8), we conclude that in theglas
for 2<n<N, —1, we have the following relation between the;; geometric sequences, the best possible scaling¥ar || is
quantization points: ©(N, /%), which is achieved only with > 1 + O(N, ).
Ynt1 _ Yn ’ (6) In the following, we propose a specific solution forthat
Yn Yn—1 achieves the optimal scaling. For any constant 0, define
i.e. the optimal quantization pointg,, 1 < n < N,, form the nonnegative functiof.(n) for n > 1 as the solution to
an approximate geometric sequence. This result, surghsinthe following equation:
enough, (joes not dep.end on the dist.ributi_orYo% |h|?. Lo(n) (14 Lo(n))" " = c. (10)
It remains to determine the geometric ratio, which in gelhera
would depend on the distribution & and is a function ofv,.  Note thatC.(n) is a well defined function, since the left-hand
In the following, we derive the optimal asymptotic depernaien side of (10) is monotonic irC.(n) and has the rang@, cc).
of the geometric ratio oV, then provide a specific solutionAlso define the functior.(n) = —log L.(n)/logn, i.e.
that attains the optimal scaling. _ o —Ce(n)
The main idea is to bound the precision of the approxi- Leln) =n ' (11)
mation in (5). Define a geometric sequeni& () with a It can be shown that for any > 0, lim,, o ¢c(n) = 1. Now
parameter > 1 as follows: define the geometric solutioti* as follows:

YO () = {yp =ar" 1 <n < N,}. @) Y EYO (14 £,/4(N,)), (12)
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In this section, we design and optimize a product channel
vector quantization codebook that comprises a geometnie (u
form in dB) magnitude quantization codebook and a spatially
uniform direction quantization codebook.

Consider a multiple-input single-output chaniele C*,
where M is the number of transmit antennas. The received
SNR is given byP(h) \hTu(h)\z, whereu(h) is the unit
beamforming vector and’(h) is the transmission power. In
the following, we propose a product codebook structure for
guantizing the direction and magnitude lof

__,\:\'.;\ ""‘gptima't'?vlels (Icase 1)1 The magnitude quantization structure is as described in
= = =(eometric levels (case . . . . . ..
—« Optimal levels (ca(se 2) ) Section Il, with the difference that the quantization vialgais
107 ‘ ‘ —— Geometric levels (case 2) Y = ||h||? instead ofY = |h|%. The quantization codebook
0 20 w6 80 100 is denoted byY = {yi,y2,---,y,, } and similar to the

discussion in Section Il, for a target outage probabitity;,

Fig. 2. Geometric power levels af* vs. the optimal power levels for chi- the first quantization level is fixed as
square random variabl¥’; Case 1)M = 3, pout = 1072, and N, = 100;
Case 2)M = 4, pout = 1074, and N, = 50

def
y1=a :e Fyl(pout)-
On the other hand, for channel direction quantization, we
wherea = Fy ' (pout), £ = limy o0 %@(ﬁ) use theM-dimensional Grassmannian codebook of e
Theorem 1. Assuming the magnitude distribution regularity
conditions, we have the followingfe > 0, V={vi,v2,- v}

(2¢/a(Np)—12) Every channel realization is mapped to a vectorVinthat
has the smallest angle with it. The corresponding regions,
according to the Gilbert-Varshamov bound argument in [1],
can be covered by the following spherical caps

1 - — €
[V Pl < 5Ny +o(N,). (19)

Now, sincelim,,,, (.(n)=1, we conclude
VPl =0 (N 2, 14
[Ve-Pl ( b ) (14) S, ={uecUyl|/(u,v,) <6},
which verifies the asymptotic optimality of the proposgtl

Fig. 2 compares the geometfit: with the optimal quanti-
zation levels for a chi-square random variablewith PDF

where Uy, is the unit complex hypersphere i@, and
6 = arcsind, whereé is the minimum chordal distance of
) V. According to the Hamming bound in [1], we have
= ———e YyM L, 15 S —
I () o —1)c Y (15) sinf =6 < 2N, "™ D (18)
This is the PDF of[h||* for a Rayleigh i.i.d. vector channel  Now consider a product channel quantization codebook

mization of (2) with multiple random start points. As the figu codebookV. The quantization regionk;; are defined as
shows, the geometric quantization levelsyih provide a fairly

good approximation of the optimal solution and therefore ar Rij = {h € CY|Z(h,v;) <6, y; < |h|* <y;1},
adopted in the remainder of this paper. ) ) def

In order to study the asymptotic performance of the gdherel <i <Ny, 1<j <N, andy,, ,, = oc. o
ometric solution, we compare its average transmission powe | N€ ultimate goalis to optimize the magnitude and direction
P(Y*) with the normalized average transmission power of tf@d€book sizesV, and N, such that the average transmission

perfect CSI system, which is given by power is minimized for a given target outage probabitity;;.
Our approach for solving this problem is a suboptimal one,

P = /OO lfy(y)dy_ (16) Where we fix an outage region
o Y

— M 2
Theorem 2: Assuming the regularity conditions on the Routage = {h €C ‘ Ihf|* < y1},

channel distribution, we have the following f@fp > 1. such that propl c Roumge] = Pout, and set the transmission
P(Y*) ) power such that outage is prevented in all other quantizatio
——— <1+ Ly/u(Np) +wLy ) (Np), (17) regions R;; defined above. Note that with this approach,
et enlarging the quantization regions increases the reqtriaed-
wherew = ;E%” . mission power and leads to an average power upper bound.

This boundis used in the next section to optimize thEhis justifies covering the direction quantization regiavith
magnitude and direction codebook sizes. spherical caps as described earlier.



by

M—1

N, = (M —1)/4)"7 N (24)

Let B, = log,(N,) and B, = log,(N}) denote respectively
the number of bits assigned to magnitude and direction quan-
tization. According to (24), in the asymptotic regime where
N — oo, we haveB, ~ +;B and B, ~ (1 — £)B. We
therefore have

By~ (M — 1)B,. (25)

This result gives the optimal bit-sharing law for a fixed
target outage probability in the asymptotic regimebf- co.
In order to study the effect of the target outage probabdity
Fig. 3. OptimalB, vs. B andp,u: for Rayleigh i.id. channel witis — 3 the bit-sharing law, we can numerically minimize the upper
transmit antennas. bound in (21). The optimization result is shown in Fig. 3 for
the i.i.d. Rayleigh fading channel with/ = 3 antennas. Note
) ) ) that for the Rayleigh channel with the magnitude distrituiti
In order_to avoid outage in a regiak;;, we usev; as the given in (15), we haveP,, = 1/(M — 1), k = 1, E[Y] = M,
beamforming vector and set the transmission polRersuch 5.4 ., — M(M — 1). The figure shows that the number of
that the worst-case received SNR is above the target NR magnitude quantization bits needs to increase slightlyhas t
S (19 target outage probability decreases. It is not however easy
h yj cos? 0 to derive a simple closed-form expression that shows this

The normalized average transmission power is therefoengivi®Pendence. Finally, we note that in this examples 2.4B,,

. 2
inf Pij |hTVZ" > Y% = Pij =
€R;j

by which is close to the asymptotic relatidsi ~ M B,,.
Np N IV. CONCLUSIONS
1 % <= proh € R;;
P(Y, V)=—E[P(h)] =) > 7b[ or: i This paper studies the asymptotic structure of the channel
Yo TR Yj Cos . . .
j=li=1 guantization codebook for MISO fading channels. For channe
1 Ny Q; 1 r_nagnitude qua_ntization, itis sho_wn thgt the asymptog'rami_— _
= 55 Y L= ——P(Y), (20) timal quantization levels are uniform in dB scale. Combinin
cos?f ~—~ y;  cos*f . . . . . .
J=1 this codebook with a spatially uniform direction quantiaat

whereP(Y) andQ;'s are as defined in (2). For a fixed outag&odebooks we form a product channel vector quantization
region, P(Y, V) can be minimized in terms 6f in the exact codebook and derive the bit-sharing law among the magnitude
same manner as in Section II. By using the geometric levélgd direction codebooks. It is shown that, for a fixed outage
Y = Y*, we have the following upper bound on the averag&obability and in the asymptotic regime whee— oo, the

power by combining (18), (20), and Theorem 2: optimal number of direction quantization bitsAg — 1 times
the number of magnitude quantization bits. The paper fuarthe

* 2 -
P(Y*,V) < 1+ Ly /a(Np) +w£ﬁ/a(N,,) (1) shows that as the target outage probability decreases, more
Pes 1— 4N;ﬁ ’ bits should be allocated to channel magnitude quantization
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