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Abstract—This paper investigates the asymptotic structure of
the channel vector quantization codebook for limited-feedback
multiple-input single-output fading channels. The designcriteria
is to minimize the average transmission power subject to a
target outage probability. First, we consider the design ofscalar
channel magnitude quantization codebook and prove that the
asymptotically optimal quantization levels are uniformly spaced
in dB scale. Such optimality does not depend on the the channel
magnitude distribution, as long as some regularity conditions
are satisfied. It is shown that the gradient of the objective
function (the average transmission power) with respect to such
quantization levels diminishes asNp

−3/2 as the number of the
levelsNp tends to infinity. We then form a product channel vector
quantization codebook comprising a uniform (in dB) channel
magnitude quantization codebook and a spatially uniform chan-
nel direction quantization codebook and derive the optimalbit-
sharing law between the two codebooks. It is shown that the
asymptotically optimal number of direction quantization bits is
M−1 times the number of channel magnitude quantization bits,
whereM is the number of base station antennas. The paper also
shows that as the target outage probability decreases, morebits
should be allocated to magnitude quantization.

I. I NTRODUCTION

The use of multiple antennas at the base-station (BS) can
considerably improve the performance of the wireless commu-
nication links. The realization of these improvements however
typically requires channel state information (CSI) at the BS. In
practical limited-feedback systems, the remote terminalsneed
to quantize the channel state and send the channel information
back to the BS via rate-limited feedback links.

While the channel quantization problem has been exten-
sively studied in the literature, most of the works in this
field focus on either channel direction quantization [1], [2] or
channel magnitude quantization [3], [4], but not both. For a
practical limited-feedback system to approach the performance
of the perfect CSI system, however, both channel direction and
magnitude information are required [5]. The design of joint
channel magnitude and direction quantization codebook is the
main subject of this paper.

The joint channel magnitude and direction quantization
problem is highly complex in general [6]. This paper focuses
on a specific problem formulation where the average total
transmit power is minimized subject to a fixed outage probabil-
ity constraint. The outage criterion is an essential performance
metric for the fixed-rate delay-limited type of communications.
In one of our earlier works [5], we presented a numerical

study of this problem. The present work provides an analyti-
cally tractable framework and focuses on the high resolution
structure of the channel vector quantization codebook.

The system setting considered in this paper is as follows.
The BS hasM antennas and the feedback link capacity is
B bits per fading block. We first focus on the scalar channel
magnitude quantization codebook and show that the asymp-
totically optimal magnitude quantization levels are uniformly
spaced in dB scale. We show that the gradient of the average
transmission power (objective function) with respect to such
quantization levels diminishes asNp

−3/2 as the quantization
codebook sizeNp tends to infinity.

We next form a product channel vector quantization code-
book comprising a spatially uniform direction quantization
codebook and a uniform (in dB) magnitude quantization
codebook and study its asymptotic performance. It is shown
that, for a fixed target outage probability and in the asymptotic
regime ofB → ∞, the number of direction quantization bits
is M − 1 times the number of magnitude quantization bits.
Moreover, as the target outage probability decreases more bits
should be allocated to magnitude quantization.

II. CHANNEL MAGNITUDE QUANTIZATION

Consider a SISO channelh ∈ C. The input signals and the
output signalr are related as

r =
√

P (h)hs+ z, (1)

whereE[|s|2]=1, P (h) is the transmission power, andz ∼
CN (0, 1) is the receiver noise. Consider a perfect CSI sys-
tem where the BS is required to satisfy a target SNRγ0
at the receiver. For this purpose, the BS needs to perform
downlink power control by setting its transmission power to
P (h)=γ0/|h|2. To perform such power control in a limited
feedback system, the receiver should quantize and feedback
|h|. The BS then sets its transmission power based on the
quantized channel magnitude.

We are interested in optimizing the power control function
and the magnitude quantization levels such that the average
transmission power is minimized for a given target outage
probability. If we fix the magnitude quantization levels, itis
not difficult to show that the optimal power control function
is a step-like function as shown in Fig. 1. Note that the figure
shows the quantization of the random variableY = |h|2

instead of|h| as the former is more tractable analytically.
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Fig. 1. Optimal transmission powerP (h) for Np fixed quantization levels
which are used for quantizingY = |h|2. Np is the quantization codebook
size.

We can now formulate the quantization codebook optimiza-
tion problem as that of optimizing the quantization levels
y1, y2, · · · , y

Np
in Fig. 1. First, the normalized average

transmission power can be expressed as

P(Y) =
1

γ
0

E[P (h)] =

Np
∑

n=1

Qn

yn
, (2)

whereY = {y1, y2, · · · , yNp
} is the quantization codebook,

Np is the codebook size,Qn=FY (yn+1)−FY (yn), FY (·) is

the CDF ofY
def
= |h|2, andyNp+1

def
= ∞.

Now, let pout denote the fixed target outage probability.
It is easy to see that the outage probability fixes the first
quantization level as follows:

y1 = a
def
= F−1

Y (pout). (3)

In order to minimize the average transmission power with
respect to the quantization levels, we take the derivative of
P(Y) with respect toyn, 2 ≤ n ≤ Np, and set it to zero. This
leads to the following equation:

fY (yn)

[

1

yn−1
−

1

yn

]

=
Qn

y2n
, (4)

wherefY (·) is the PDF of Y. By approximating

Qn ≈ fY (yn)(yn+1 − yn), (5)

for 2≤n≤Np− 1, we have the following relation between the
quantization points:

yn+1

yn
=

yn
yn−1

, (6)

i.e. the optimal quantization pointsyn, 1 ≤ n ≤ Np, form
an approximate geometric sequence. This result, surprisingly
enough, does not depend on the distribution ofY = |h|2.

It remains to determine the geometric ratio, which in general
would depend on the distribution ofY and is a function ofNp.
In the following, we derive the optimal asymptotic dependency
of the geometric ratio onNp, then provide a specific solution
that attains the optimal scaling.

The main idea is to bound the precision of the approxi-
mation in (5). Define a geometric sequenceY(g)(r) with a
parameterr > 1 as follows:

Y
(g)(r) =

{

yn = arn−1
∣

∣ 1 ≤ n ≤ Np

}

. (7)

A specific set of geometric quantization levels is effectiveif
the gradient of the objective functionP in (2) with respect
to the quantization levels inY(g)(r) is close to zero. Using
the Taylor expansion on the approximation error in (5), it is
possible to obtain the following bound on the gradient:

Lemma 1: For the geometric sequenceY(g)(r), we have
∥

∥∇Y(g)(r)P
∥

∥ <
1

2
µ
√

Np(r − 1)2 +D, (8)

whereµ is an upper bound off ′
Y (y) for all y > 0, and

D =

∣

∣

∣

∣

1

y2

(

(r − 1)yfY (y)−

∫ ∞

y

fY (t)dt

)∣

∣

∣

∣

y=y
Np

=arNp−1

(9)
It is clear from (8) that the geometric solution is more

appropriate for smooth magnitude distribution functions,i.e.
distributions with smallµ. In the rest of the paper, we
assume thatµ is bounded, and assume a number of additional
regularity conditions on the channel magnitude distribution
function:

1) f(y) is a positive differentiable function with bounded
derivative overy > 0.

2) κ = limy→∞ −f(y)/f ′
Y (y) exists andκ 6= 0.

3) E[Y ] is bounded and thereforelimy→∞ yf(y) = 0.
We now use the bound (8) to determine the optimal scaling

of r as a function ofNp. The idea is to setr appropriately, so
that both terms in (8) go to zero asNp → ∞. Sincer > 1,
we can expressr as a function ofNp as r = 1+L(Np),
whereL(Np) is an arbitrary positive function. Defineζ(Np) =

−logL(Np)/logNp, so that r = 1 + N
−ζ(Np)
p . Also, let

ζ(∞)= limNp→∞ ζ(Np).
To achieve‖∇P‖ → 0 in (8), both

√

Np(r − 1)2 andD
should go to zero. From (9), forD → 0, we needy

Np
=

arNp−1 → ∞. Substitutingr = 1 + N
−ζ(Np)
p and applying

L’Höpital’s rule, we get a necessary conditionζ(∞) ≤ 1.
Now, consider the first term in (8), sinceζ(∞) ≤ 1 and

r = 1 + N
−ζ(Np)
p , we see that the first term cannot go to

zero faster thanΘ(N
−3/2
p ). Since‖∇P‖ is bounded by the

magnitude of the first term in (8), we conclude that in the class
of geometric sequences, the best possible scaling for‖∇P‖ is
Θ(N

−3/2
p ), which is achieved only withr ≥ 1 + Θ(N−1

p ).
In the following, we propose a specific solution forr that

achieves the optimal scaling. For any constantc ≥ 0, define
the nonnegative functionLc(n) for n > 1 as the solution to
the following equation:

Lc(n) (1 + Lc(n))
n−1 = c. (10)

Note thatLc(n) is a well defined function, since the left-hand
side of (10) is monotonic inLc(n) and has the range[0,∞).
Also define the functionζc(n) = −logLc(n)/logn, i.e.

Lc(n) = n−ζc(n). (11)

It can be shown that for anyc > 0, limn→∞ ζc(n) = 1. Now
define the geometric solutionY⋆ as follows:

Y
⋆ def
= Y

(g)(1 + Lκ/a(Np)), (12)



0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

n

Optimal levels (case 1)
Geometric levels (case 1)
Optimal levels (case 2)
Geometric levels (case 2)

Fig. 2. Geometric power levels ofY⋆ vs. the optimal power levels for chi-
square random variableY ; Case 1)M = 3, pout = 10−5, andNp = 100;
Case 2)M = 4, pout = 10−4, andNp = 50

wherea = F−1
Y (pout), κ = limy→∞

−fY (y)
f ′

Y (y) .
Theorem 1: Assuming the magnitude distribution regularity

conditions, we have the following:∀ǫ > 0,

‖∇Y⋆P‖ <
1

2
µN

−(2ζκ/a(Np)−
1
2 )

p + o
(

N−3+ǫ
p

)

. (13)

Now, sincelimn→∞ ζc(n)=1, we conclude

‖∇Y⋆P‖ = O
(

N
− 3

2+ǫ
p

)

, (14)

which verifies the asymptotic optimality of the proposedY⋆.
Fig. 2 compares the geometricY⋆ with the optimal quanti-

zation levels for a chi-square random variableY with PDF

fY (y) =
1

(M − 1)!
e−yyM−1. (15)

This is the PDF of‖h‖2 for a Rayleigh i.i.d. vector channel
h∈CM . The optimal levels are computed by numerical mini-
mization of (2) with multiple random start points. As the figure
shows, the geometric quantization levels inY⋆ provide a fairly
good approximation of the optimal solution and therefore are
adopted in the remainder of this paper.

In order to study the asymptotic performance of the ge-
ometric solution, we compare its average transmission power
P(Y⋆) with the normalized average transmission power of the
perfect CSI system, which is given by

PCSI =

∫ ∞

0

1

y
fY (y)dy. (16)

Theorem 2: Assuming the regularity conditions on the
channel distribution, we have the following forNp > 1:

P(Y⋆)

PCSI

< 1 + Lκ/a(Np) + ωL2
κ/a(Np), (17)

whereω = E[Y ]
κ2PCSI

.
This bound is used in the next section to optimize the

magnitude and direction codebook sizes.

III. C HANNEL VECTORQUANTIZATION

In this section, we design and optimize a product channel
vector quantization codebook that comprises a geometric (uni-
form in dB) magnitude quantization codebook and a spatially
uniform direction quantization codebook.

Consider a multiple-input single-output channelh ∈ C
M ,

whereM is the number of transmit antennas. The received
SNR is given byP (h)

∣

∣h
T
u(h)

∣

∣

2
, whereu(h) is the unit

beamforming vector andP (h) is the transmission power. In
the following, we propose a product codebook structure for
quantizing the direction and magnitude ofh.

The magnitude quantization structure is as described in
Section II, with the difference that the quantization variable is
Y = ‖h‖2 instead ofY = |h|2. The quantization codebook
is denoted byY = {y1, y2, · · · , yNp

} and similar to the
discussion in Section II, for a target outage probabilitypout,
the first quantization level is fixed as

y1 = a
def
= F−1

Y (pout).

On the other hand, for channel direction quantization, we
use theM -dimensional Grassmannian codebook of sizeNb:

V = {v1,v2, · · · ,vNb
} .

Every channel realization is mapped to a vector inV that
has the smallest angle with it. The corresponding regions,
according to the Gilbert-Varshamov bound argument in [1],
can be covered by the following spherical caps

Sn = {u ∈ UM |∠(u,vn) ≤ θ} ,

where UM is the unit complex hypersphere inCM , and
θ = arcsin δ, where δ is the minimum chordal distance of
V. According to the Hamming bound in [1], we have

sin θ = δ ≤ 2N
−

1
2(M−1)

b . (18)

Now consider a product channel quantization codebook
comprising the magnitude codebookY and the direction
codebookV. The quantization regionsRij are defined as

Rij =
{

h ∈ C
M
∣

∣∠(h,vi) ≤ θ, yj ≤ ‖h‖2 < yj+1

}

,

where1 ≤ i ≤ Nb, 1 ≤ j ≤ Np, andy
Np+1

def
= ∞.

The ultimate goal is to optimize the magnitude and direction
codebook sizesNp andNb such that the average transmission
power is minimized for a given target outage probabilitypout.
Our approach for solving this problem is a suboptimal one,
where we fix an outage region

Routage =
{

h ∈ C
M
∣

∣ ‖h‖2 < y1
}

,

such that prob[h ∈ Routage] = pout, and set the transmission
power such that outage is prevented in all other quantization
regions Rij defined above. Note that with this approach,
enlarging the quantization regions increases the requiredtrans-
mission power and leads to an average power upper bound.
This justifies covering the direction quantization regionswith
spherical caps as described earlier.
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Fig. 3. OptimalBp vs.B andpout for Rayleigh i.i.d. channel withM = 3
transmit antennas.

In order to avoid outage in a regionRij , we usevi as the
beamforming vector and set the transmission powerPij such
that the worst-case received SNR is above the target SNRγ0:

inf
h∈Rij

Pij

∣

∣h
T
vi

∣

∣

2
≥ γ0 ⇒ Pij =

γ0
yj cos2 θ

. (19)

The normalized average transmission power is therefore given
by

P(Y,V)=
1

γ0

E[P (h)] =

Np
∑

j=1

Nb
∑

i=1

prob[h ∈ Rij ]

yj cos2 θ

=
1

cos2 θ

Np
∑

j=1

Qj

yj
=

1

cos2 θ
P(Y), (20)

whereP(Y) andQj ’s are as defined in (2). For a fixed outage
region,P(Y,V) can be minimized in terms ofY in the exact
same manner as in Section II. By using the geometric levels
Y = Y

⋆, we have the following upper bound on the average
power by combining (18), (20), and Theorem 2:

P(Y⋆,V)

PCSI

<
1 + Lκ/a(Np) + ωL2

κ/a(Np)

1− 4N
− 1

M−1

b

, (21)

wherePCSI, κ, a, andω are as defined in Section II.
We intend to find the optimal codebook sizesNp andNb

such that the upper bound (21) is minimized. The optimization
is subject to the constraint

NpNb ≤ N
def
= 2B, (22)

whereB is the total number of feedback bits.
We assume the asymptotic regime whereB → ∞ and

therefore Np, Nb ≫ 1. By assumingNp ≫ 1 and by
using (11) and the fact thatlimn→∞ ζc(n) = 1, we have
Lκ/a(Np) ≈ N−1

p , for any fixed target outage probabilitypout.
The upper bound in (21) can therefore be approximated by

(1 +N−1
p )(1 + 4N

− 1
M−1

b ) ≈ 1 +N−1
p + 4N

− 1
M−1

b . (23)

By using the Lagrange multiplier method, we can minimize
(23) with respect to (22). The optimal value forNp is given

by
Np = ((M − 1)/4)

M−1
M N

1
M . (24)

Let Bp = log2(Np) andBb = log2(Nb) denote respectively
the number of bits assigned to magnitude and direction quan-
tization. According to (24), in the asymptotic regime where
N → ∞, we haveBp ≈ 1

MB and Bb ≈ (1 − 1
M )B. We

therefore have

Bb ≈ (M − 1)Bp. (25)

This result gives the optimal bit-sharing law for a fixed
target outage probability in the asymptotic regime ofB → ∞.
In order to study the effect of the target outage probabilityon
the bit-sharing law, we can numerically minimize the upper
bound in (21). The optimization result is shown in Fig. 3 for
the i.i.d. Rayleigh fading channel withM = 3 antennas. Note
that for the Rayleigh channel with the magnitude distribution
given in (15), we havePCSI = 1/(M − 1), κ = 1, E[Y ] = M ,
and ω = M(M − 1). The figure shows that the number of
magnitude quantization bits needs to increase slightly as the
target outage probability decreases. It is not however easy
to derive a simple closed-form expression that shows this
dependence. Finally, we note that in this example,B ≈ 2.4Bp,
which is close to the asymptotic relationB ≈ MBp.

IV. CONCLUSIONS

This paper studies the asymptotic structure of the channel
quantization codebook for MISO fading channels. For channel
magnitude quantization, it is shown that the asymptotically op-
timal quantization levels are uniform in dB scale. Combining
this codebook with a spatially uniform direction quantization
codebooks we form a product channel vector quantization
codebook and derive the bit-sharing law among the magnitude
and direction codebooks. It is shown that, for a fixed outage
probability and in the asymptotic regime whereB → ∞, the
optimal number of direction quantization bits isM − 1 times
the number of magnitude quantization bits. The paper further
shows that as the target outage probability decreases, more
bits should be allocated to channel magnitude quantization.
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