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Distortion Analysis of MOS Track-and-Hold
Sampling Mixers Using Time-Varying Volterra Series

Wei Yu, Subhajit Sen, and Bosco H. Leung,Senior Member, IEEE

Abstract—A time-varying theory of Volterra series is developed
and applied in the sampled-data domain to solve for harmonic
and intermodulation distortion of a MOS-based track-and-hold
sampling mixer with a nonzero fall-time LO waveform. Distortion
due to sampling error is also calculated. These results, when
combined with the continuous-time solution, quantify harmonic
and intermodulation distortion of a track-and-hold type mixer
completely. Closed-form solutions are obtained. As a practical
consequence, it is shown that for certain fall-time, the distortion
of track-and-hold mixers can be better than what would be
predicted by a simple application of time-invariant Volterra series
theory.

Index Terms—Harmonic distortion, intermodulation distor-
tion, intermediate frequency (IF), radio frequency (RF), time-
varying Volterra series, track-and-hold sampling mixer.

I. INTRODUCTION

I NCREASING demand for digital wireless personal com-
munication devices, and steady improvements in the MOS

device performance of scaled VLSI technologies, have al-
lowed the feasibility of performing A/D conversion on radio-
frequency (RF) signals directly or on their mixed down (IF)
versions [1], [2]. Early A/D conversion of the received sig-
nal in a receiver chain pushes front-end signal processing
functions such as channel-selection filtering and automatic
gain control (AGC) into the digital domain, and thus helps
to improve tolerance against process variations inherent in
analog dominated front-end architectures and therefore the
overall performance of the receiver. The key element crucial
for good distortion performance of an A/D converter that
digitizes RF signals is the track-and-hold circuit at the input
of the A/D converter. This is because unlike a conventional
baseband A/D converter, the track-and-hold circuit in an RF
A/D application is inherently a mixer that mixes the RF signal
down to baseband or a lower IF frequency in the process
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of continuous-time to discrete-time conversion. Compared to
the conversion of a band-limited signal in a conventional
Nyquist-rate A/D converter, the mixing down process in a
narrow-band VHF or UHF signal is much more nonlinear
with nonlinear products increasing with input RF frequency.
Linearity is crucial because the presence of adjacent channel
interfering signals at the input generates spurious components
in the desired channel band. The track-and-hold mixer also
differs from a conventional mixer (such as a Gilbert multiplier)
in that the frequency of the sampling clock (which serves as
the equivalent of a local oscillator) may be a submultiple of
the local oscillator (LO) frequency in a conventional mixer.
In a subsampling track-and-hold mixer, theth harmonic
of a sampling-clock with fundamental frequency may be
mixed down with a carrier-tone at frequency to generate a
baseband tone at frequency ( ).

In this paper, the harmonic and intermodulation distortion
of MOS track-and-hold mixers is thoroughly analyzed and
related with simulation results. It is shown that a complete
picture of distortion can be obtained by applying Volterra
series analysis, hitherto applied only to continuous-time time-
invariant nonlinear systems, to time-varying circuits that are
observed every clock period in the discrete-time domain such
as in the case of a track-and-hold circuits in A/D converters.
We have done this by developing a theory of Volterra analysis
for time-varying systems valid under the assumption that the
time-constant of the circuit is much smaller than the sample
clock period. We have demonstrated that the incorporation
of the time-varying analysis to Volterra series is essential for
an accurate estimation of distortion for arbitrary fall-time in
the sampling clock waveform. The closed-form formulas we
obtained are useful in providing physical insights to the circuit
designer. Successful applications which used these formulas in
designing the front-end sampling mixer have been reported, for
example, in an 150-MHz 13-bit 12-mW A/D converter in [3],
and in a 400-MHz 12-bit 18-mW A/D converter in [4].

The rest of the paper is organized as follows. Section II
explains the basic operation of the track-and-hold circuit as a
mixer under the assumption of zero fall-time LO waveform.
Expressions for harmonic distortion (HDand HD ) and
intermodulation (IM and IM ) are derived using Volterra
Series. The difficulty of extending this result to an arbi-
trary gate waveform is explained. Section III develops the
theory of time-varying Volterra Series and shows that it is
possible to extend the theory to time-varying systems by
assuming that the output is observed in the sampled-date
domain. Expressions for time-varying distortion are derived
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Fig. 1. A track-and-hold mixer.

for the case of a simple track-and-hold mixer. In Section IV,
sampling distortion is analyzed and expressions for harmonic
and intermodulation distortion are derived. Section V describes
SPICE simulation results for the simple track-and-hold mixer.
These results are then explained using the theoretical results
on the continuous-time, time-varying, and sampling distortion.
Section VI analyzes the practical scheme of bottom-plate
sampling using the theory developed. Conclusions are drawn
in Section VII.

II. TRACK-AND-HOLD SAMPLING MIXER

A. Mixer Operation

A single switch track-and-hold sampling mixer consists of
a MOS transistor followed by a sampling capacitor (Fig. 1).
The input is at RF or IF frequency. As applied at the
gate goes high, the output tracks the input; as goes
low, the output is sampled and held on the capacitor. The
output is considered in the sampled-data domain.

Before analyzing distortion, let us first define the terminol-
ogy used in this paper. Suppose that a single pure sinusoidal
input is applied at the input of the circuit, in this
case to , we define the harmonic distortion ofth order
to be the magnitude of the term at the output . If
two tones are applied at the input, frequencies at the sum and
difference of input frequencies are present at the output. So,
two different kinds of second order intermodulation (IM) are
possible. For an input of , IM is defined as
the magnitude of term at the output, and IM
that of term. Likewise, intermodulation of third
order (or IM ) is defined as the magnitude of
term when an input of is applied. The
physical origin of HD and IM is the same, and HDis
related to IM by a factor of 2. So, we are more interested
in IM than IM . In the following analysis, unless explicitly
specified, IM refers to IM .

For example, in the case that the RF input contains two tones
at frequencies (say at 100.3 MHz) and (say at 100.4
MHz), respectively, with a sampling clock frequency at
100 MHz. The components visible in the baseband are shown
in Fig. 2. The 100-kHz component is the IMcomponent
at . The 200-kHz component is due to IMat

Fig. 2. Mixing distortion using two tones.

(200.2 MHz) mixed down to baseband. The
component at 700 kHz is the IMcomponent at
(200.7 MHz) mixed down. We also observe HDcomponents
at 600 and 800 kHz as well as HDcomponent at 900
kHz. We may note that by using a differential architecture,
the even order distortion (e.g., HD, IM ) may be made
considerably smaller (by the mismatch factor) than in a single-
ended architecture.

A rigorous distortion analysis of the simple track-and-
hold circuit with arbitrary input frequency and arbitrary LO
waveform is difficult for the following reasons.

• The relation between drain current and terminal voltages
is nonlinear.

• The body effect and bias-dependent junction capacitors
produce additional nonlinearities.

• The circuit is time varying due to the modulation of drain-
source conductance by the applied gate LO waveform.

• The precise instant of sampling depends not only on
the LO waveform but also on the input amplitude and
frequency resulting in sampling distortion.

Previous work on track-and-hold distortion focused on its
application in baseband A/D converters [5], [6]. These have
mainly tackled the distortion problem of a CMOS switch
by isolating the distortion into the “tracking error” and the
“aperture error” components with low-frequency single-tone
inputs. They used assumptions that are not valid for track-
and-hold mixers applications, the most important of which is
the circuit time-invariant assumption. In [7], track-and-hold
type mixers for continuous-time output using Volterra Series
approach were analyzed. Again, the analysis did not take into
account the sampling and the time-varying nature of the circuit
due to periodic but arbitrary gate LO waveforms.

In the following, we propose to analyze distortion using
time-varying Volterra series. To simplify the problem, we
will abstract the most essential features of MOS track-and-
hold distortion by excluding the nonlinear bias-dependent
components of junction capacitors and body effect from the
MOS transistor model. Further analysis incorporating these
second order effects results in a slight modification of only a
few decibels. As a first step, we will solve for mixer distortion
in the continuous-time mode, which corresponds to the case
where LO waveform has a sharp cutoff. This also serves
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Fig. 3. Mixing using ideal sampling.

to illustrate the essential steps in applying Volterra series in
distortion analysis.

B. Mixer Using Ideal Sampling

The mixer operation under ideal sampling can be approx-
imated by the following simplified model. We assume that
a constant high voltage is applied at the gate, an RF signal
at frequency is applied at the input, and that the output
is sampled using an ideal sampling process. Since the circuit
is nonlinear, we expect the input signal to be attenuated by
the gain of the network along with harmonic components at

where 2, 3, , as shown in Fig. 3(b). The ideal
sampling process followed by an ideal low-pass filter with a
cutoff frequency at /2 is then applied to the output. The
effect is to replicate the output spectrum by shifting it by ,
where 1, 2, , so that a shifted component of output is
mixed down to near DC. This is shown in Fig. 3(d). We note
that harmonic components at now reappear near DC at

and close to in the baseband. We may
also note that it is possible to mix down the output to the same
positions in the baseband by using a sampling clock with a
frequency that is a subharmonic of (i.e., subsampling). The
observation is that the harmonic distortion of the mixer without
sampling [i.e., Fig. 3(b)] is the same as the harmonic distortion
of the sampled signal in the baseband [i.e., Fig. 3(d)] if ideal
sampling is assumed. Therefore, under the ideal sampling
condition, harmonic distortion can be calculated as if sampling
has not occurred, and the system is operating in the continuous-
time mode.

The mixing process with ideal sampling just described may
now be used to approximate a track-and-hold circuit at whose
gate an ideal square-wave is applied. When the gate voltage
is at , the MOS transistor is in the triode region and the
output tracks the input voltage. When the MOS turnsOFF

instantaneously, as in the case of an ideal square-wave gate
voltage, the tracked output voltage is held onto the capacitor.
Assuming that the time-constant of the circuit is much smaller
than the gateON period, the output voltage reaches a steady-
state value within several time-constants after the MOS turns

ON. (This is true even for high-frequency RF if a subsampling
technique is used with a sufficient subsampling factor.) Under
this condition, the distortion components seen in the discrete-
time frequency domain are the same as that for the case
when the track-and-hold is working in the continuous-time
mode with the gate voltage at and the MOS transistor
stays ON. Therefore, to calculate distortion components for
the ideal sampling case, we only need to analyze distortion
for the continuous-time mode, which can be done using the
time-invariant Volterra series theory.

C. Volterra Series and Harmonic Distortion

Under some general continuity conditions, a time-invariant
system may be expanded into the sum of a linear term, a
second-order term, and a third-order term, etc. [8]. Mathemat-
ically, if the input is , the output is represented by
a series of the type,

(1)

whose convergence is uniform. More succinctly, we write,

(2)

where represents the th order operator with kernel .
This series is called the Volterra series. It can be shown that
Volterra kernels form a basis for sufficiently well-behaved
systems, i.e., a mildly nonlinear system can be expanded in
a Volterra series in one and only one way.

Expanding a system in Volterra series enables us to find
its frequency response and hence its sinusoidal response, so
Volterra series is directly related to harmonic distortion [9].
For example, the response to a sinusoidal input for a second-
order system contains a term at twice the input frequency and
a term at DC. The magnitude of each term is related to the
corresponding terms in the Volterra series. More specifically,
for an input of , the output is

The third-order term can be derived in a similar way. Follow-
ing the definition for harmonic distortion, harmonic distortion
is related to Volterra kernels in the following way:

HD (3)

HD (4)
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Similarly, intermodulation can be quantified as well:

IM (5)

IM (6)

Therefore, obtaining the Volterra series coefficients is the key
in calculating harmonic distortion and intermodulation.

D. MOS Mixer Volterra Coefficients

We now analyze harmonic distortion of an ideal sampling
mixer using the continuous-time model by calculating its
Volterra coefficients. First, it can be shown by a Volterra
analysis that at sufficiently low frequencies the distortion
is mainly determined by the nonlinear source-to-drain–
characteristic of the MOS transistor and that distortion due to
bias-dependent junction capacitance is quite small for typical
values of MOS model parameters. We also choose to ignore
body effect for simplicity in analysis, but note that this choice
modifies neither our method of distortion analysis nor the
significant conclusions regarding distortion in MOS track-
and-hold mixers. Further, the only parasitic capacitance of
importance is the junction capacitance at the output side whose
effect is to increase the value of the sampling capacitor.
Therefore, in deriving the Volterra series coefficient, we can
assume the configuration in Fig. 1 and use the most basic MOS
equation

(7)

where , and is the threshold voltage. Either
the input or the output side may be regarded as source. The
system differential equation thus becomes

(8)

where . Express in its Volterra series

where , substitute the expansion into (8),
and keep only the first three order terms, so we get

Note, is first order since the input is a pure sinusoidal;
the term is second order; and is third order. Now,
equating the coefficients, we have

(9)

The solutions to this set of differential equations are the
Volterra coefficients , , and . Since we assume a
constant gate voltage, hence a constant, we can show that

(10)

(11)

(12)

where the assumption of small time-constant ( ) is
used, and also the expressions are symmetrized. Substituting
(10)–(12) into (3)–(6) yields the harmonic distortion and
intermodulation

HD (13)

HD (14)

IM (15)

IM (16)

It must be emphasized that the above analysis assumes a
constant gate voltage. This applies to the case of perfect square
LO sampling if the system time-constant is much smaller than
the sampling period. However, if the sampling-clock voltage
deviates from the ideal square wave, two effects start to emerge
which will invalidate the continuous-time model. If the gate
voltage falling edge is not instantaneous, the approximate
time-constant of the circuit, as given by

gradually increases since the MOSON resistance increases as
the MOS leaves the triode region. In addition, the precise
instant of sampling depends not only on the gate falling
edge slew-rate waveform but also on the input amplitude and
frequency, which results in sampling distortion. This leads to
a situation where the final sampled voltage on the sampling
capacitor when the MOS transistor turnsOFF deviates from
the steady-state voltage on the capacitor predicted by Volterra
series theory when the MOS transistor isON. Therefore, the
sampled voltage can no longer be predicted with a time-
invariant theory. This leads us to develop the theory of the
time-varying Volterra Series.

III. T IME-VARYING VOLTERRA SERIES

As mentioned in the previous section, it is necessary to
generalize the Volterra series to time-varying systems in order
to analyze the track-and-hold mixer with an arbitrary LO
waveform. In this section, we develop a time-varying Volterra
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series, explore its frequency response, and show that the time-
varying Volterra series can be applied in the sampled-data
domain to solve for time-varying distortion exactly.

A. Time-Varying Systems

The notion of impulse response can be generalized to time-
varying systems by adding another time variable [10]. The
impulse response of a linear time-varying system, , is
a function of two time variables, whereis the observation
time and the launch time. represents the output
observed at time for an impulse input launched at time.
The system response for an arbitrary input can be found from

using the following:

(17)

Under general continuity conditions, a linear time-varying
system is completely characterized by its two-dimensional
impulse response, otherwise known as the kernel.

Higher order kernels are generalized in a similar way. For
example, a second order kernel has two launch time variables
and an observation time variable. is the system
response to two impulses launched at time instantsand .
In general, a mildly nonlinear time-varying system has the
following Volterra series expansion:

(18)

Recall that in the linear time-invariant case, the impulse
response may be found in either time domain or frequency
domain. The frequency domain solution is often much easier
to obtain than the time domain impulse response. However,
for time-varying systems, frequency response is no longer
well defined and, hence, it is necessary to directly apply
time domain impulses at the system input to find the output
expression. This amounts to solving the differential equation
directly, which is not trivial in general. However, for first-
order differential equations such as the track-and-hold mixer
equation, this method is feasible.

Consider the mixer equation (9), whereis time varying.
The zero state response of the first-order equation

can be obtained using an integrating factor

(19)

Fig. 4. Composition of second-order system from first-order systems.

If we set in the above, we obtain the impulse
response of the first-order time-varying system

if

if .

(20)

We would also like to calculate the second-order kernel. In
general, a second-order system can be thought of as the
composition of linear systems as shown in Fig. 4. Suppose
that the impulse responses of the linear systems are ,

, and , respectively, the second-order kernel
can be computed as follows:

(21)

The expression for third order systems is similar. If in Fig. 4,
is second order, and therefore the overall system is third

order, the overall system kernel is then

(22)
Therefore, as was done for the time-invariant case,and
can be solved consecutively. For example, the second-order
kernel is found by substituting from (19) and setting
input as an impulse in the solution to the second-order equation
in (9)

(23)

Since the differential equations are linear and first order, there
is no theoretical difficulty in obtaining the solution. Following
this method, the complete time domain solution to the system
can be obtained.

Now, in a track-and-hold mixer where the output points of
interest are at the sampled points, we need to sampleand
apply Fourier analysis to the sampled points to obtain the sec-
ond order distortion. This procedure, although straightforward
in theory, is tedious even for a simple system such as the track-
and-hold mixer. However, as will be shown in the next section,
by exploring the frequency domain interpretation and by taking
advantage of the fact that output is in the sampled-data domain,
the problem can be simplified significantly.

B. Sampling Process

Let sampling occur at time 0, let be the time-
varying kernel of the system with a nonzero fall-time LO
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waveform, the linear term in the sampled output voltage is

ZIR (24)

where is the sampling period, and ZIR is the zero input
response due to the initial condition. Since we have assumed
that the RC time-constant for the track-and-hold mixer is much
smaller than the sampling period, ZIR is negligible. Also
because of the small time-constant, we may replace the lower
limit of integration by

(25)

Further, since the output voltage of interest is at the sampling
instant, the time-varying characteristic of importance occurs
during the time within a few time-constants before the sam-
pling instant. This means that the same Volterra kernel applies
to every sampling instant, except the kernels are shifted by

, integer multiples of the sampling period. To simplify
computation, we want to keep the Volterra kernel identical
for each sampling period. Therefore, instead of shifting the
kernel, we shift the input signal backward in time by and
keep the sampling instant at time 0. This effectively keeps
the functional form of the kernel identical for all samples.
Further, there is nothing special about sampling points.
So, if sampling occurs at an arbitrary time, the sampled
voltage can be represented as

(26)

This is a fictitious signal, whose value atrepresents
the sampled value of the output if sampling is to occur at. If
sampling occurs at instants , the output voltage samples are
just , , , . Hence, the nonideal sampling
of the output signal is reduced to the ideal sampling of

, where is related to the input by (26). Now,
because the harmonic distortion of the ideal sampled
is the same as the harmonic distortion of the continuous
signal , the problem of calculating distortion in nonideal
sampled output is reduced to the problem of calculating the
distortion in the continuous signal . The transformation
from (24)–(26) also reduces a time-varying system to a time-
invariant system, as the relation betweenand in (26) is
time invariant. This situation is analogous to the analysis of
discrete control systems where, although a zero-order-hold is
not a time-invariant operation in the continuous-time domain,
the input–output relation is nevertheless time invariant in the
sampled-data domain.

It remains to find the impulse response of the linear time-
invariant system (26). Denote the impulse response in time
and frequency domain by and , respectively. To
find , set in (26), it follows that

if
if .

(27)

The frequency response is its Fourier transform

(28)

where, again, is the time-varying kernel.
The same technique applies to higher order systems. For a

second-order system, the sampled-data domain response is

(29)
and the frequency response is

(30)
Again, the second-order kernel may be obtained from its
composition from first-order systems as in (21).

The frequency domain expression is of the most interest.
It is in fact possible to bypass the time domain expression
and obtain frequency domain result directly. Assuming the
composition form as in Fig. 4, substituting (21) into (30), then

More succinctly, and for convenience only, define

(31)

and

(32)

we arrive at the formula

(33)
In particular, setting gives the sampled frequency
domain kernel for the system of Fig. 4

(34)

The third-order frequency domain representation is similarly
derived. If in Fig. 4 is second order, then

(35)

and the overall frequency domain kernel is

(36)

C. Time-Varying Mixer

We now analyze the track-and-hold mixer of Fig. 1 in the
sampled-data domain. Assume the input side is source, the
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output drain,1 from the basic MOS equation, we have

We define MOS conductance as . The MOS
enters the cutoff region at , so the value of
goes to zero at each sampling point. Now, since we have
assumed that the RC time-constant is small, the region of
most importance is the time right before the sampling instant.
Therefore, we can approximateby a linear function prior
to each sampling point. This assumption is most valid if the
system time-constant is smaller than the fall-time of the gate
voltage. In practical cases where this is not true, the analysis
yields a limiting case and provides a useful bound. Now, the
slope of the linearly varying is just the slope of the cutting
edge minus the slope of the input signal to a first-order
approximation. So, if we define , where
and are as indicated in Fig. 1, and define , the
MOS equation becomes

Let , , expand into its Volterra series as
before, and collect the first three order terms, we have

(37)
To calculate , we use (31) where the time domain
is as found in (20).

where the substitution of and are made.
This integral cannot be evaluated analytically. However, we
are interested in the value of the integral whenis close to 0,
so the upper limit of the integral is close to zero. The integrand
is a rapidly increasing function of as approaches 0; so,
effectively, the only relevant portion of the integration is when

is close to 0. Therefore, we can assume that .
In this case, the integral becomes:2

erf (38)

So, setting gives

(39)

1Assuming the output side being source will give a slightly different
differential equation, but the form of the answer is the same.

2The error function is defined as erf(t) = (2=
p
�) t

0
e�x dx.

The second-order term is evaluated using (33), where the
time-varying kernel is obtained from its composition from
first-order terms. Mechanically, is substituted by , and

is substituted by

(40)

Again, approximate by its Taylor expansion, substitute
(38) to (40)

erf

erf

(41)

Fortunately, at , the last two integrals may be evaluated
numerically

(42)

where comes from the evaluation of definite
integrals. (The relative contributions from the two integrals are
comparable.) Finally, is also obtained by its composition
from first- and second-order systems

(43)

We need to evaluate the above expression for . Because
each term contains two integrals, there is a total of
four definite integrals. By substituting the expression for
from (38), and from (41), we can evaluate the integral
numerically

(44)

where . Equations (39), (42), and (44) are the
final solution to the sampled time-varying Volterra series. To
summarize the results in terms of circuit parameters

(45)

(46)

(47)
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where again , , numerically.
Recall that this result is obtained by assuming a linearly
decreasing . In reality, is nearly constant for a large part of
the sampling period. Therefore, this solution is an asymptotic
case.

Comparing the Volterra coefficients for the nonideal sam-
pling MOS track-and-hold mixer with the ideal sampling
case, at low frequency we find that nonlinearity due to the
time-varying nature is much smaller than the ideal sampling
case. However, time-varying distortion varies with the cube of
input frequency; so, theoretically, at high enough frequency,
the time-varying distortion will overtake the continuous-time
distortion. This happens at an RF frequency around 2–3
GHz. The fact that time-varying distortion is small at low
frequency can be intuitively explained. There are two sources
of nonlinearity from the MOS governing equation

An obvious source of nonlinearity is the square term ,
but this effect is secondary for the ideal sampling case, where
the major contributing factor is the input signal dependent
conductance . However, in a nonideal sam-
pling mixer, the first-order signal dependence inis eliminated
because sampling always occurs when , hence the
local behavior of prior to cutoff is approximately same for
each sampling point. Then, the only nonlinear factors left are
the signal dependence in the derivative of the conductance and
the term, which are significantly smaller. However, we
are not getting something for free here. Although in the case
of a nonideally sampled mixer, the term causes
much less input dependence in, the term manifests as an
altogether different source of distortion. Because cutoff occurs
when , the cut-off time is now input signal
dependent. In other words, the distortion in the amplitude
domain is shifted to the time domain by nonideal sampling.
The signal dependent cutoff time is called sampling error,
which will be discussed in detail in the next section.

IV. SAMPLING ERROR

In the development of time-varying distortion analysis in
sampled-data domain, the output voltage is assumed to be
sampled at equally spaced instants. This assumption is not
true if the gate voltage has a nonzero fall-time. The instance of
sampling is when , so the time at which sampling
occurs depends not only on gate voltage but also on the
input voltage. The signal-dependent sampling time introduces
additional distortion term, which can again be quantified using
Volterra series.

Suppose the input signal is smooth—call it —and we
intend to sample the input at time 0. Let the gate voltage have
a finite-slope falling edge with slope, where
as shown in Fig. 5, i.e., the falling edge has the form

. Since the MOS enters cutoff at , and
the input is applied at the source side, sampling occurs at the
instant when . Now, use the approximation

Fig. 5. Sampling error.

, and solve for the cutoff time

(48)

where we assumed that is large. Substitute the above
expression for into the Taylor expansion for around
0, and collect the first three order terms, we have

(49)

where again the assumption of large is used. So, due
to the finite fall-time, the sampled value differs from
the desired value by additional signal-dependent terms,
which produce distortion. Since the sampling time is arbitrary,
(49) is valid if time 0 is replaced by an arbitrary sampling time.

The signal dependence can be analyzed by Volterra series.
The linear term in (49) is , so . The second-
order term is the product of derivative with the function
itself, and its Volterra series coefficient can be found using
the composition rule (21) followed by symmetrization. The
second order coefficient is found to be

(50)

and for the third-order,

(51)

Using these expressions in (3)–(6), harmonic distortion and
intermodulation can be calculated exactly

HD (52)

HD (53)

IM (54)

IM (55)
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Comparing the sampling distortion as given by (52)–(55) to
the continuous-time distortion as given by (13)–(16), we can
show that the sampling distortion becomes comparable to the
continuous-time distortion when the fall-time is in the order
of , where is the RC time-constant formed by the MOS
resistor and the load capacitor, andis the period of the input
signal. Therefore, sampling error becomes a bigger problem at
high frequency, where has to be small.

V. SIMULATION RESULTS AND COMPARISON TO THEORY

SPICE simulations are performed to verify the theoretical
results derived in the previous sections for the cases of
continuous-time, time-varying, and sampling distortion. The
three factors have to be combined in order to fully explain the
distortion of a track-and-hold mixer whose gate voltage has a
finite falling slope.

Although RF is normally carried in the 900-MHz range,
we start off the simulation at 100 MHz assuming the mixer is
used in a first-stage IF digitizer application. The track-and-hold
mixer is fed with either a single tone or two tones near 100
MHz at its IF input. For example, to estimate intermodulation
distortion, two tones at 100.3 and 100.4 MHz are applied at
the IF input, and a 100-MHz square-wave sampling clock is
applied at the gate. Consistent with our standing assumptions,
the RC time-constant duringON period has been chosen to
be approximately 20 ps, and therefore much smaller than the
5 ns ON period of the sampling clock. Finally, we note that
the results presented in this section are applicable in the RF
frequency range as well.

A. Simulation Accuracy and Speedup

A number of precautions have to be taken to ensure nu-
merical accuracy, convergence, and charge conservation in
the simulations. The simulation accuracy has to be calibrated
with ideal sine tones and simple linear models. The maximum
time-step value and time-step update algorithm also have to
be chosen consistent with the dynamic range to be expected
from simulations. The time-step parameter (delmax) is crucial
in determining simulation accuracy. Our experience shows
that a delmax as low as 0.1 ps is necessary to achieve
reasonably accurate results. Charge conservation is particularly
difficult to achieve. It depends on the level of the MOS model
chosen, the MOS device capacitance (capop) model, and the
integration method. Our experience has been that the charge
conservation models (capop 4 and capop 9 in HSPICE)
either have poor convergence properties or produce numerical
inaccuracy. We have bypassed the charge-injection and charge-
conservation problems by calculating the device capacitances
separately and inserting linear capacitances into the circuit and
using a no-capacitance (capop 5) model. Without these
precautions, the simulation results can be rendered totally
useless.

SPICE simulation for very small values of delmax can
make the simulation time impractically long. A major factor in
speeding up simulation has been the insight that the RC time-
constant during theON period of the MOS transistor is much
smaller than theON period. Thus, since the circuit reaches
steady state within only a tiny fraction of the period, we may

Fig. 6. Harmonic distortion (HD2 and HD3) of a track-and-hold mixer
versus fall-time at 100 MHz (body effect excluded).

only need to simulate around the sampling edge. This has
been accomplished by repeated simulations at uniform phase
intervals of the input sine-wave for a total phase interval of
360 , which corresponds to exactly one period of the mixed
down frequency.

B. Harmonic Distortion

Fig. 6 plots the second- and third-order harmonic distortion
of a track-and-hold mixer with a MOS switch of 102

m/0.8 m. The sampling capacitance is 0.2 pF. An additional
capacitance of 0.152 pF is added to account for source/drain
capacitance. A square-wave with fall-time varying between 10
ps and 1.28 ns is applied at the gate. In this simulation, the
SPICE model parameter gamma has been set to 0 to exclude
substrate bias modulation of the threshold voltage. The HD
curve can clearly be divided into three regions:

1) a relatively flat portion corresponding to small fall-times
up to a few tens of picoseconds;

2) a region with distortion decreasing with fall-time and
having a distinct minimum; and

3) a region with distortion increasing with fall-time occur-
ring for large fall-times and with a distinct slope of 20
dB/decade for HD and 40 dB/decade for HD.

Region 1 shows an asymptotic behavior toward 0 fall-
time. This asymptotic distortion value agrees with the predic-
tion from continuous-time (time-invariant) harmonic distortion
model (13)–(16). This is to be expected since we have shown
in Section II that for fall-time of 0, the harmonic distortion of
the MOS track-and-hold distortion approaches the continuous-
time harmonic distortion.

Region 3 displays asymptotic behavior toward a log-linear
relation that increases at 20 dB/decade for HDand 40
dB/decade for HD. This line agrees exactly with the distortion
predicted by sampling error (52)–(55). Hence, for large fall-
times, harmonic distortion is limited by sampling distortion.

Region 2 can be explained by time-varying distortion of a
MOS track-and-hold mixer at whose gate a nonzero fall-time
sampling signal is applied. In Section III, it was pointed out



110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1999

Fig. 7. Effect of input frequency on harmonic distortion HD3 (body effect
included).

that for the case of nonideal sampling, if sampling error is
neglected, harmonic distortion, now attributed to time-varying
distortion, becomes very small. This is responsible for the
dip in distortion curve in region 2 since in this intermediate
region the fall-time is large enough so that contribution due
to the continuous-time operation is small, while at the same
time the fall-time is small enough that sampling distortion
does not manifest itself. Overall, the simulation result shows
quantitative agreement with the theory in regions 1 and 3, and
qualitative agreement in region 2.

In order to highlight the role of time-varying distortion, we
note that the third order sampling distortion is proportional
to the square of the input frequency. Thus, for large
fall-times, by reducing the input frequency we may be
able to reduce sampling distortion sufficiently enough for
time-varying distortion to manifest itself over a wider
window (i.e., region 2) of the sweep of fall-time. Conversely,
by increasing the input frequency, sampling-distortion may
increase to the point that it completely swamps out the
time-varying distortion. This trend is confirmed in Fig. 7
which plots HD versus fall-time for 25, 100, and 500 MHz.
Body effect is included in these simulations.

Thus, we have shown both by simulation and by
time-varying analysis that a region with a distortion
smaller than the 0 fall-time asymptotic value predicted
by continuous-time distortion exists, which explains the
decreasing distortion and the minimum observed in this
region. The practical significance of this result is that the
distortion of a MOS track-and-hold mixer can actually
be better than what would be predicted by time-invariant
continuous-time Volterra series theory by a proper choice of
fall-time. Note that this does not occur for HDand IM in
this particular case because sampling distortion is bigger than
the continuous-time distortion even for small fall-times.

C. Intermodulation Distortion

Fig. 8 shows the intermodulation distortion of the MOS
track-and-hold mixer obtained by applying two tones at 100.3

Fig. 8. Intermodulation (IM+
2

and IM3) of a track-and-hold mixer versus
fall-time at 100 MHz.

and 100.4 MHz at the IF input and a 100-MHz sampling clock
at the gate. IM resulting from the difference of the two
input frequencies is very small. IM, which behaves in the
same trend as HD, is shown. The distortion characteristics
again match very well with theoretical predictions both for
continuous-time formulas developed in Section II and for
the sampling error distortion developed in Section IV. The
initial decrease in IM curve as the fall-time increases may
be explained by the system time-varying nature. In general,
intermodulation distortion is slightly worse than harmonic
distortion, and they exhibit similar behavior with respect to
fall-time.

VI. BOTTOM-PLATE SAMPLING

In this last section, we solve for distortion in the bottom-
plate sampling scheme as a practical application of the theory
developed. The bottom-plate sampling scheme is shown in
Fig. 9. The input is at , and the output is taken as the
differential voltage between and . During sampling,
the bottom transistor opens first, which effectively fixes the
amount of charge on the sampling capacitor. Then, the top
transistor opens, which fixes the voltage levels ofand .
In the figure, is included as the junction capacitor of the
top switch, which can be fairly large, and is included as
the junction capacitor of the bottom switch, which is typically
much smaller.

The main advantage of bottom-plate sampling is that it
eliminates the charge injection problem. When a MOS tran-
sistor turnsOFF, the charges that comprise the inversion layer
are injected to either the source or the drain side. Which
side the charges go to depends on the relative impedance.
In the track-and-hold mixer of Fig. 1, the impedance on the
output side ( ) is small, so it attracts the extra charges,
which disturb the output signal level. This does not happen in
bottom-plate sampling. At the opening of the bottom transistor,
charges are injected to the ground, while at the opening of the
top plate, the charges are injected back to the input. In either
case, little extra charges are dumped to the sampling capacitor.
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Fig. 9. Bottom plate sampling.

To analyze this circuit, we first model the transistors as
simple switches. It is easy to show that the output voltage can
be expressed as

(56)

where and are the voltages at node when
the bottom switch and top switch each opens, respectively.
The total distortion in the output is, therefore, the sum of two
factors, one due to the opening of the bottom switch, and
the other due to the opening of the top switch. Distortions
due to the two parts should be analyzed separately. Each part
would consist of three factors: the continuous distortion, the
time-varying distortion, and the sampling distortion.

A. Distortion in Opening Bottom Switch

We first notice that the sampling error is small in opening
the bottom switch. This is because the source and the drain of
the bottom switch are kept at a constant voltage at the ground
level. This eliminates signal-dependent sampling.

Next, the continuous-time distortion can be calculated from
the coupled differential equations. Assume that both transistors
are in the triode region with device constants and ,
respectively. Define and

. The governing equations are

(57)
where and are the voltages on the nodes and . We
assume the Volterra series expansions

(58)

If we assume that and , the output
of interest, is close to the case without the bottom
transistor. This is not unexpected because’s are almost
independent of , and is much larger than . So,
in this case is the same as in the case without the bottom

Fig. 10. Simplified bottom plate sampling.

switch, as given by (14)–(16). In particular,

HD (59)

IM (60)

Note that the continuous-time distortion is determined by the
ratio of the top transistor.

Finally, we need to take the time-varying distortion into ac-
count. The difficulty is that we have a second-order differential
equation with nonconstant coefficients for which solutions are
not easily found. However, the situation may be simplified.
When the bottom switch opens, the resistance between the
source and the drain increases with time and eventually reaches
infinite; but the top switch stays closed, hence its resistance is
relatively small. So we can neglect the top switch altogether
and simplify the problem to that in Fig. 10. With only one
capacitive node, this circuit is modeled by a first order equation
which we can solve.

We are ultimately interested in the differential voltage
( – ). But since node is purely sinusoidal, the distortion in
( – ) is same as the distortion in. Let be the voltage in
node . The differential equation for the system is as follows:

(61)

where again , and .
Using the methodology developed in Section IV, time-

varying distortion may now be derived. Note here we have
at the right side of the first-order equation, which must

be kept as an operator in the derivation, i.e.,

and

(62)
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After carrying out the necessary computation, the final expres-
sions for time-varying distortion turn out to be

(63)

(64)

(65)

where is related to fall-time as defined before, and
, , numerically. Again, these

distortion components are small.
Therefore, as the bottom switch opens, for a small fall-

time, distortion is bounded by distortion produced by the
continuous-time operation as expressed in (59) and (60). Since
both the time-varying and the sampling distortion are small,
distortion due to bottom switch is small at large fall-times.

B. Distortion in Opening Top Switch

The distortion analysis for the top switch is considerably
simpler. This is because when the bottom switch is open,
the circuit is identical to the case in Fig. 1, except that the
capacitor is primarily due to parasitics. The distortion again
consists of three parts: continuous-time, time-varying, and
sampling distortion.

The continuous-time distortion is given by (13)–(16)

HD (66)

IM (67)

where the capacitor is

(68)

Since the capacitor in this case is primarily due to the parasitic
which is much smaller than in the single switch case, the
continuous-time distortion is small. The sampling distortion
is the same as before, as given by (52)–(55)

HD (69)

IM (70)

Again, the time-varying distortion is very small.
Therefore, as the top switch opens, because both continuous-

time and time-varying distortion are small, the total distortion
is mainly due to sampling error, which is significant at large
fall-times.

C. Total Distortion

We see that distortion due to the opening of the bottom
switch comes from continuous-time operation, and that due to
the opening of the top switch comes from sampling, so the

total distortion is a linear combination of the two as in (56).

HD

(71)

IM

(72)

Therefore, distortion for a bottom-plate sampler at small fall-
time is bounded by the continuous distortion, and distortion at
large fall-time is bounded by sampling distortion. The major
difference between this and the simple case of the track-and-
hold mixer is that the distortion due to sampling (when the top
switch opens) is lessened by a factor of , which
is significant. So, distortion due to nonzero fall-time is less a
problem in bottom-plate sampling than in the simple case of
Fig. 1. This is another advantage of bottom-plate sampling.

VII. CONCLUSIONS

The operation of a MOS track-and-hold circuit as a mixer
is explained. It is shown that conventional nonlinear time-
invariant analysis using Volterra series, while useful for
explaining the behavior of the circuit for ideal sampling
clock waveform, fails to account for its behavior for nonzero
fall-time of the sampling clock. The theory of time-varying
Volterra series is developed and applied to the MOS track-
and-hold circuit in sampled-data domain. Expressions for
harmonic and intermodulation distortion for nonzero fall-time
LO waveform are derived. Nonzero fall-time also introduces
sampling distortion for which distortion formulas are derived.
SPICE simulation on the track-and-hold sampling mixer is
performed, and the results are successfully explained for all
fall-times by combining the theories of continuous-time, time-
varying, and sampling distortion. Finally, the practical scheme
of bottom-plate sampling is analyzed.
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