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Distortion Analysis of MOS Track-and-Hold
Sampling Mixers Using Time-Varying \Volterra Series

Wei Yu, Subhaijit Sen, and Bosco H. Leurggnior Member, IEEE

Abstract—A time-varying theory of Volterra series is developed of continuous-time to discrete-time conversion. Compared to
and applied in the sampled-data domain to solve for harmonic the conversion of a band-limited signal in a conventional
and intermodulation distortion of a MOS-based track-and-hold  \yqist-rate A/D converter, the mixing down process in a
sampling mixer with a nonzero fall-time LO waveform. Distortion - - .
due to sampling error is also calculated. These results, when n"f‘rrow'band VHF or U'__”: S|gr_1al 'S.ml.JCh more nonlinear
combined with the continuous-time solution, quantify harmonic With nonlinear products increasing with input RF frequency.
and intermodulation distortion of a track-and-hold type mixer  Linearity is crucial because the presence of adjacent channel
completely. Closed-form solutions are obtained. As a practical interfering signals at the input generates spurious components
consequence, it is shown that for certain fall-time, the distortion in the desired channel band. The track-and-hold mixer also
of track-and-hold mixers can be better than what would be . . . . o
predicted by a simple application of time-invariant Volterra series differs from a conventional mixer (such as a Gilbert multiplier)
theory. in that the frequency of the sampling clock (which serves as

Index Terms—Harmonic distortion, intermodulation distor- the equivaleqt of a local oscillator) 'may be a su.bmultip'le of
tion, intermediate frequency (IF), radio frequency (RF), time- the local oscillator (LO) frequency in a conventional mixer.
varying Volterra series, track-and-hold sampling mixer. In a subsampling track-and-hold mixer, theth harmonic
of a sampling-clock with fundamental frequengy may be
mixed down with a carrier-tone at frequengy to generate a
baseband tone at frequency, — mf.).

NCREASING demand for digital wireless personal com- |n this paper, the harmonic and intermodulation distortion
munication devices, and steady improvements in the M@$ MOS track-and-hold mixers is thoroughly analyzed and
device performance of scaled VLSI technologies, have aklated with simulation results. It is shown that a complete
lowed the feasibility of performing A/D conversion on radiopicture of distortion can be obtained by applying Volterra
frequency (RF) signals directly or on their mixed down (IFgeries analysis, hitherto applied only to continuous-time time-
versions [1], [2]. Early A/D conversion of the received sigmvariant nonlinear systems, to time-varying circuits that are
nal in a receiver chain pushes front-end signal processigBserved every clock period in the discrete-time domain such
functions such as channel-selection filtering and automafig in the case of a track-and-hold circuits in A/D converters.
gain control (AGC) into the digital domain, and thus helpgve have done this by developing a theory of Volterra analysis
to improve tolerance against process variations inherent i} time-varying systems valid under the assumption that the
analog dominated front-end architectures and therefore tfi@e-constant of the circuit is much smaller than the sample
overall performance of the receiver. The key element crucigbck period. We have demonstrated that the incorporation
for good distortion performance of an A/D converter thaf the time-varying analysis to \Volterra series is essential for
digitizes RF signals is the track-and-hold circuit at the inpin accurate estimation of distortion for arbitrary fall-time in
of the A/D converter. This is because unlike a conventiong{e sampling clock waveform. The closed-form formulas we
baseband A/D converter, the track-and-hold circuit in an Riptained are useful in providing physical insights to the circuit
A/D application is inherently a mixer that mixes the RF signgjesigner. Successful applications which used these formulas in
down to baseband or a lower IF frequency in the proceggsigning the front-end sampling mixer have been reported, for
example, in an 150-MHz 13-bit 12-mW A/D converter in [3],
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Fig. 1. A track-and-hold mixer. Fig. 2. Mixing distortion using two tones.

for the case of a simple track-and-hold mixer. In Section N2frr2 — frr2 (200.2 MHz) mixed down to baseband. The
sampling distortion is analyzed and expressions for harmoiemponent at 700 kHz is the [IMcomponent afrr1 + frr2

and intermodulation distortion are derived. Section V describé200.7 MHz) mixed down. We also observe HBPomponents
SPICE simulation results for the simple track-and-hold mixeat 600 and 800 kHz as well as HDcomponent at 900
These results are then explained using the theoretical reskitiz. We may note that by using a differential architecture,
on the continuous-time, time-varying, and sampling distortiothe even order distortion (e.g., HPIM,) may be made
Section VI analyzes the practical scheme of bottom-platensiderably smaller (by the mismatch factor) than in a single-
sampling using the theory developed. Conclusions are dragmded architecture.

in Section VII. A rigorous distortion analysis of the simple track-and-
hold circuit with arbitrary input frequency and arbitrary LO
[I. TRACK-AND-HOLD SAMPLING MIXER waveform is difficult for the following reasons.
* The relation between drain current and terminal voltages
A. Mixer Operation is nonlinear.

A single switch track-and-hold sampling mixer consists of * The body effect and bias-dependent junction capacitors
a MOS transistor followed by a sampling capacitor (Fig. 1). Produce additional nonlinearities. _
The inputVi, is at RF or IF frequency. A%; o applied atthe  * The circuitis time varying due to the modulation of drain-

gate goes high, the outpif, tracks the input; ad7.o goes source conductance by the applied gate LO waveform.
low, the outputV, is sampled and held on the capacitor. The * The precise instant of sampling depends not only on
output is considered in the sampled-data domain. the LO waveform but also on the input amplitude and

Before analyzing distortion, let us first define the terminol-  frequency resulting in sampling distortion.
ogy used in this paper. Suppose that a single pure sinusoidaPrevious work on track-and-hold distortion focused on its
input sin(wt) is applied at the input of the circuit, in thisapplication in baseband A/D converters [5], [6]. These have
case toVi,, we define the harmonic distortion efth order mainly tackled the distortion problem of a CMOS switch
to be the magnitude of thén(nwt) term at the output/,. If by isolating the distortion into the “tracking error” and the
two tones are applied at the input, frequencies at the sum dagerture error” components with low-frequency single-tone
difference of input frequencies are present at the output. $mputs. They used assumptions that are not valid for track-
two different kinds of second order intermodulation {)vare and-hold mixers applications, the most important of which is
possible. For an input 6fin(w; t)+sin(w»t), IMF is defined as the circuit time-invariant assumption. In [7], track-and-hold
the magnitude ofin((w; +w2)t) term at the output, and I  type mixers for continuous-time output using Volterra Series
that ofsin((w; —w2 )t) term. Likewise, intermodulation of third approach were analyzed. Again, the analysis did not take into
order (or IMs) is defined as the magnitude ©fi((2w; —w2)t) account the sampling and the time-varying nature of the circuit
term when an input ofin(w:t) + sin(wot) is applied. The due to periodic but arbitrary gate LO waveforms.
physical origin of HQ and IMJ is the same, and HDis In the following, we propose to analyze distortion using
related to IMf by a factor of 2. So, we are more interestetime-varying Volterra series. To simplify the problem, we
in IM5 than IMJ . In the following analysis, unless explicitly will abstract the most essential features of MOS track-and-
specified, IM refers to IM, . hold distortion by excluding the nonlinear bias-dependent

For example, in the case that the RF input contains two tonemmponents of junction capacitors and body effect from the
at frequenciegrr: (say at 100.3 MHz) andgrr. (say at 100.4 MOS transistor model. Further analysis incorporating these
MHz), respectively, with a sampling clock frequeng¢y at second order effects results in a slight modification of only a
100 MHz. The components visible in the baseband are shofenv decibels. As a first step, we will solve for mixer distortion
in Fig. 2. The 100-kHz component is the JMcomponent in the continuous-time mode, which corresponds to the case
at frr1 — frre. The 200-kHz component is due to §vat where LO waveform has a sharp cutoff. This also serves
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(@ ON. (This is true even for high-frequency RF if a subsampling
v RF Input technique is used with a sufficient subsampling factor.) Under
this condition, the distortion components seen in the discrete-
f time frequency domain are the same as that for the case
when the track-and-hold is working in the continuous-time
T-H. Output without sampling mode with the gate voltage dt; and the MOS transistor
} \ stays ON. Therefore, to calculate distortion components for
o 26 3 the ideal sampling case, we only need to analyze distortion
for the continuous-time mode, which can be done using the
time-invariant \olterra series theory.

(b)

©

Waveform

Sampling
‘Lo ’

f 2f 3f C. \Volterra Series and Harmonic Distortion

@ Under some general continuity conditions, a time-invariant
T-H. Output with sampling and Low-pass filtering system may be expanded into the sum of a linear term, a
[ second-order term, and a third-order term, etc. [8]. Mathemat-
ically, if the input isx(t), the outputy(t) is represented by

a series of the type,

_ /_ Z ha(t — m1)a(n) dn

out

Fig. 3. Mixing using ideal sampling.

to illustrate the essential steps in applying Volterra series in Y
distortion analysis. +oo
// h (t—Tl,t—TQ) ( 1) (TQ)dTldTQ

B. Mixer Using Ideal Sampling

—|—o<>

The mixer operation under ideal sampling can be approx- /// 3(t =71, t— 72, t—73)
imated by the following simplified model. We assume that
a constant high voltage is applied at the gate, an RF signal ra(r)a(re)a(7s) dry dry drs + - (1)
at frequencyfrr is applied at the input, and that the outpufvhose convergence is uniform. More succinctly, we write,
is sampled using an ideal sampling process. Since the circuit
is nonlinear, we expect the input signal to be attenuated by y(t) = Ha[e()] + Ho[e(O)] + Hslz ()] +--- (2)
the gain of the network along with harmonic components @here H,, represents theith order operator with kerné,,.
nfrr Wheren = 2, 3, .-, as shown in Fig. 3(b). The ideal This series is called the \olterra series. It can be shown that
sampling process followed by an ideal low-pass filter with Golterra kernels form a basis for sufficiently well-behaved
cutoff frequency atf,/2 is then applied to the output. Thesystems, i.e., a mildly nonlinear system can be expanded in
effect is to replicate the output spectrum by shifting it/bfs, a \olterra series in one and only one way.
wheren = 1, 2, -, so that a shifted component of output is Expanding a system in Volterra series enables us to find
mixed down to near DC. This is shown in Fig. 3(d). We notgs frequency response and hence its sinusoidal response, so
that harmonic components aifrr now reappear near DC at\plterra series is directly related to harmonic distortion [9].
nfrr — nfs and close tofrr — fs in the baseband. We mayFor example, the response to a sinusoidal input for a second-
also note that it is possible to mix down the output to the sarggder system contains a term at twice the input frequency and
positions in the baseband by using a sampling clock withzgaterm at DC. The magnitude of each term is related to the

frequency that is a subharmonic £f (i.e., subsampling). The corresponding terms in the \olterra series. More specifically,
observation is that the harmonic distortion of the mixer withoggr an input of A - cos(wot), the output is

sampling [i.e., Fig. 3(b)] is the same as the harmonic distortion 5
of the sampled signal in the baseband [i.e., Fig. 3(d)] if |deaJ t) <é> Hy(jwo, jwo)e> <ot
sampling is assumed. Therefore, under the ideal samplmg 2

condition, harmonic distortion can be calculated as if sampling A2 ) ) 2jwot
has not occurred, and the system is operating in the continuous- 9 Hy(—jwo, —jwo)e
time mode.

2 2
The mixing process with ideal sampling just described may + <é> Hy(jwo, —jwo) + <é> Hy(—jwo, jwo).
now be used to approximate a track-and-hold circuit at whose 2 2

gate an ideal square-wave is applied. When the gate voltagiee third-order term can be derived in a similar way. Follow-
is at Vi, the MOS transistor is in the triode region and théng the definition for harmonic distortion, harmonic distortion
output tracks the input voltage. When the MOS tumrr s related to Volterra kernels in the following way:

instantaneously, as in the case of an ideal square-wave gate A Holw, w)

voltage, the tracked output voltage is held onto the capacitor. HD, = 2 W) (3)
Assuming that the time-constant of the circuit is much smaller ) 1

than the gateN period, the output voltage reaches a steady- HDs = A Hy(w, w, w). @)

state value within several time-constants after the MOS turns 4 Hy(w)
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Similarly, intermodulation can be quantified as well: The solutions to this set of differential equations are the
Volterra coefficientsH,, H», and Hs. Since we assume a
My = A - %(_)w) (5) constant gate voltage, hence a constante can show that
1w
2 __ 8 _
M, — 347 Hz(w, w, —w) ©) Hi(w) = T e 1 (10)
. . o - (Hi(w)Hi(w2) — 1)
Therefore, obtaining the Volterra series coefficients is the key Hy(wy, we) = 2 i
in calculating harmonic distortion and intermodulation. g+i(w1 +w2)C
_ Jlwr + w2)C (11)
D. MOS Mixer Volterra Coefficients 2K (Ve — V)2
We now analyze harmonic distortion of an ideal sampling Hi(wy, wa, ws) = K- H}(“’l) “Ha(ws, w3)
mixer using the continuous-time model by calculating its g+ i1 +ws +ws)C
\Volterra coefficients. First, it can be shown by a \olterra _ —jlwr Fwa +w3)C (12)
analysis that at sufficiently low frequencies the distortion - 3K(Vg - V)3

is mainly determined by the nonlinear source-to-dr&iV”

characteristic of the MOS transistor and that distortion due
bias-dependent junction capacitance is quite small for typic
values of MOS model parameters. We also choose to ign
body effect for simplicity in analysis, but note that this choic

%here the assumption of small time-constapt$ jwC) is

§ed, and also the expressions are symmetrized. Substituting
0)—(12) into (3)—(6) yields the harmonic distortion and
gﬁermodulation

modifies neither our method of distortion analysis nor the HD, _Aa JwC (13)
significant conclusions regarding distortion in MOS track- 2 K(Vg—W)?

and-hold mixers. Further, the only parasitic capacitance of A? jwC

importance is the junction capacitance at the output side whose HD; = 4 m (14)
effect is to increase the value of the sampling capacitor. IMy =0 (15)
Therefore, in deriving the Volterra series coefficient, we can A2 jwC

assume the configuration in Fig. 1 and use the most basic MOS M3 =— (16)

KV ViR
equation 4 K(Ve-V)

K It must be emphasized that the above analysis assumes a
Ip=KWVgs —Vi)Vps — 5 VA (7) constant gate voltage. This applies to the case of perfect square

LO sampling if the system time-constant is much smaller than

whereK = uC,,.W/L, andV; is the threshold voltage. Eitherthe sampling period. However, if the sampling-clock voltage
the input or the output side may be regarded as source. Tdaviates from the ideal square wave, two effects start to emerge

system differential equation thus becomes which will invalidate the continuous-time model. If the gate
voltage falling edge is not instantaneous, the approximate
av, K, , ) . > i
gV, +C = GVin — - (V2 -v2 (8) time-constant of the circuit, as given by
t 1 e}
o _ C C
. _ T = — = )
whereg = K(Vg — V;). ExpressV, (¢) in its Volterra series 9 K(Vas - Vi)
Vo(t) = vi(t) +v2(t) +vs(t) + - gradually increases since the M@ resistance increases as

) o the MOS leaves the triode region. In addition, the precise
wherew, (t) = Hn[Vin(t)], substitute the expansion into (8)nstant of sampling depends not only on the gate falling

and keep only the first three order terms, so we get edge slew-rate waveform but also on the input amplitude and
d frequency, which results in sampling distortion. This leads to
glvr +v2 +03) + C o (v +v2 +vs) a situation where the final sampled voltage on the sampling
K . capacitor when the MOS transistor turosr deviates from
= gVin — B} (Via — vi — 2v1v2). the steady-state voltage on the capacitor predicted by Volterra

o _ _ _ _ ~ series theory when the MOS transistoras. Therefore, the
Note, Vin IS first order since the input is a pure sinusoidakampled voltage can no longer be predicted with a time-
the termwi is second order; and,v; is third order. Now, jnvariant theory. This leads us to develop the theory of the

equating the coefficients, we have time-varying \olterra Series.

dvl

gu+C—r =gV lIl. TIME-VARYING VOLTERRA SERIES
dv K i i i - it i

gra+C 2 2 (v? — V2) (9) As m_entmned in the previous section, it is necessary to
dt 2 generalize the \Volterra series to time-varying systems in order
dvs to analyze the track-and-hold mixer with an arbitrary LO

gus + C — = Kvivs

dt ' waveform. In this section, we develop a time-varying Volterra
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series, explore its frequency response, and show that the time-
varying \olterra series can be applied in the sampled-data > h (1)
domain to solve for time-varying distortion exactly.

Vout

Vin_| h (t,T) {o=

A. Time-Varying Systems

The notion of impulse response can be generalized to time-
varying systems by adding another time variable [10]. The » )
impulse response of a linear time-varying systéﬁr(,t, T), is Fig. 4. Composition of second-order system from first-order systems.

a function of two time variables, wheieis the observation
time andr the launch time.s.(¢, 7) represents the outputlf we setVi,(x) = (u—7) in the above, we obtain the impulse
observed at time for an impulse input launched at time response of the first-order time-varying system

The system response for an arbitrary input can be found from +
exp —/ 9O 49D gy s,
hi(t, 7) = . C C - (20)

hi(t, 7) using the following:
o ; J 17 0 if t <.
vilt) = /_Oo nlt, )a(r) dr. (7) We would also like to calculate the second-order kernel. In

general, a second-order system can be thought of as the
Under general continuity conditions, a linear time-varyingomposition of linear systems as shown in Fig. 4. Suppose
system is completely characterized by its two-dimensiontiat the impulse responses of the linear systemsiafe ),
impulse response, otherwise known as the kernel. hy(¢, 7), and h.(t, 7), respectively, the second-order kernel
Higher order kernels are generalized in a similar way. Fean be computed as follows:
example, a second order kernel has two launch time variables o0
and an observation time variable:(¢, 71, 72) is the system ho(t, 71, T2) /

= h b(t,‘t:)

he(t, T)ho (T, 1) (7, T2)dr.  (21)

response to two impulses launched at time instaptsnd . -
In general, a mildly nonlinear time-varying system has thHehe expression for third order systems is similar. If in Fig. 4,
following Volterra series expansion: h, is second order, and therefore the overall system is third
order, the overall system kernel is then
w0 = [t ety an halt, 77212 = [ el (e, s 7t )
= - 22)
+ halt, 71, dry d o (
// 2(t, T, m2)a(n)e(r) dry drz Therefore, as was done for the time-invariant caseand hs
can be solved consecutively. For example, the second-order
// ha(t, 71, 72, 73) kernel is found by substituting; (7) from (19) and setting
() )a(r ) (r3) dry dro drs + - (18) :Ep(us;c)as an impulse in the solution to the second-order equation

Recall that in the linear time-invariant case, the impulse oalt) = /t eXp(_ /t ®d§>@<5>
response may be found in either time domain or frequency 0 . C C \ 2
domain. The frequency domain solution is often much easier (W3 (r) = V(7)) dr. (23)

to obtain than the time domain impulse response. However,

for time-varying systems, frequency response is no long8ince the differential equations are linear and first order, there
well defined and, hence, it is necessary to directly apply no theoretical difficulty in obtaining the solution. Following
time domain impulses at the system input to find the outptitis method, the complete time domain solution to the system
expression. This amounts to solving the differential equati@an be obtained.

directly, which is not trivial in general. However, for first- Now, in a track-and-hold mixer where the output points of
order differential equations such as the track-and-hold mixiaterest are at the sampled points, we need to samyplnd

equation, this method is feasible. apply Fourier analysis to the sampled points to obtain the sec-
Consider the mixer equation (9), whegeis time varying. ond order distortion. This procedure, although straightforward
The zero state response of the first-order equation in theory, is tedious even for a simple system such as the track-

and-hold mixer. However, as will be shown in the next section,
duy by exploring the frequency domain interpretation and by taking
g+ E = 9Vin advantage of the fact that output is in the sampled-data domain,
the problem can be simplified significantly.
can be obtained using an integrating factor
, , B. Sampling Process
vy (1) :/ exp<_/ @C@)Mvm(u) dp.  (19) Let sampling occur at time O, let(¢, 7) be the time-
0 w © ¢ varying kernel of the system with a nonzero fall-time LO
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waveform, the linear term in the sampled output voltage is where, againfi; (¢, 7) is the time-varying kernel.
/0 The same technique applies to higher order systems. For a

y(0) = hi(0, T)z(r)dr + ZIR (24) second-order system, the sampled-data domain response is

=T
where T is the sampling period, and ZIR is the zero input _ o
response due to the initial condition. Since we have assumeg(t) o /_Oo /_Oo ha(0, 7, 2)(ry + (2 + ) dri dr
that the RC time-constant for the track-and-hold mixer is much (29)
smaller than the sampling period, ZIR is negligible. Als@nd the frequency response is
because of the small time-constant, we may replace the lower

0 0
limit of integration by —oo Hy(wy, wy) = / / ha(0, 71, T2)eM T 2T oy .
’ T (30)
0) = hi(0 dr. 25
y(0) /_Oo (0, me(r)dr (25) Again, the second-order kernel may be obtained from its

Further, since the output voltage of interest is at the samplifigmPosition from first-order systems as in (21). _

instant, the time-varying characteristic of importance occurs | "¢ frequency domain expression is of the most interest.
during the time within a few time-constants before the sanf-1s In fa_ct possible to bypa_lss the twn_e domain expression
pling instant. This means that the same Volterra kernel appl@d obtain frequency domain result directly. Assuming the
to every sampling instant, except the kernels are shifted B§MPosition form as in Fig. 4, substituting (21) into (30), then

nT’, integer multiples of the sampling period. To simplify . 0 0 0

computation, we want to keep the Volterra kernel identical Ha(wi, we) = / / / he(0, 73)he (73, T1)
for each sampling period. Therefore, instead of shifting the —ooY o0 /o0

kernel, we shift the input signal backward in time by’ and “hy(73, T2)e M e drs dry do.
keep the sampling instant at time 0. This effectively keeps

the functional form of the kernel identical for all samples'.vIore succinctly, and for convenience only, define

Further, there is nothing special about sampling potits . t '
So, if sampling occurs at an arbitrary timte the sampled Hi(w, t) :/ hai(t, 7)e’“7 dr (31)
voltage can be represented as -
o and
t t
y(t) = / h1(07 T)‘T(T + t) dr. (26) ﬁg(wl, Wa, t) = / / hg(t, 71, 7'2)
This y(t) is a fictitious signal, whose value atrepresents T eIw2 T (32)

the sampled value of the output if sampling is to occur. at

sampling occurs at instant&l’, the output voltage samples areve arrive at the formula

just y(T), y(2T), - - -, y(nT). Hence, the nonideal sampling "

of the output signal is reduced to the ideal sampling of HQ(wl, wa, t) :/ he(t, T)Ho(wr, 7)Hy(wz, 7)dr.

y(t), wherey(t) is related to the input(¢) by (26). Now, —oo 33)
it;eiﬂgsgatrﬁz h;;”;ﬁg'chg;‘:':‘gmgn d?;t;?t?ofe(?fl fﬁ?%‘gggguoln particular, settingt = 0 gives the sampled frequency
: : . Lo : ﬁ%main kernel for the system of Fig. 4

signal (¢), the problem of calculating distortion in nonidea

sampled output is reduced to the problem of calculating the , 0

distortion in the continuous signal(¢). The transformation ~Ha(w1, w2) I/ he(0, 7)Ho (w1, 7)Hy(w2, 7)d7. (34)

from (24)—(26) also reduces a time-varying system to a time- I

invariant system, as the relation betweerandy in (26) is The third-order frequency domain representation is similarly

time invariant. This situation is analogous to the analysis @érived. If h, in Fig. 4 is second order, then

discrete control systems where, although a zero-order-hold is

not a time-invariant operation in the continuous-time domain, I:I?)(wb wa, w3, t)
the input—output relation is nevertheless time invariant in the t
sampled-data domain. = /_ he(t, T)Ho(wr, w2, 7)Hy(ws, 7)dr  (35)

It remains to find the impulse response of the linear time-
invariant system (26). Denote the impulse response in tiraad the overall frequency domain kernel is

and frequency domain bﬁl(t) and H, (), respectively. To o

find Ay, setz(t) = &(t) in (26), it follows that Hy(wr, ws, ws) = / hol0, 7)Ha (w1, wo, ) Ha(ws, 7) dr.
s [hi(0, =) ift>0 —oo
h() = {0 if £ <0. @) (36)

The frequency response is its Fourier transform

0
ﬁl(w) = / (0, 7)“T dr (28) We now analyze the track-and-hold mixer of Fig. 1 in the

—o0 sampled-data domain. Assume the input side is source, the

C. Time-Varying Mixer
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output draint from the basic MOS equation, we have The second-order term is evaluated using (33), where the
K ) dv. time-varying kernel is obtained from its composition from
KV,-V,-Vy)y(Vu-V,) — - Va=Vo)"+C —; =0 firstorder terms. Mechanically; is substituted byH,, and

. Vin | bstituted bye/«*
We define MOS conductance as= K(V,, — V;). The MOS 1S substituted bye

enters the cutoff region a,, — V; = 0, so the value ofj H(wr, ws, £) = /t exp<_ /t 9(¢) d§> o
I I ~ C

goes to zero at each sampling point. Now, since we have oo

assumed that the RC time-constant is small, the region of Cmr e (Hy w27 ) 9Ty dr
most importance is the time right before the sampling instant. K
Therefore, we can approximateby a linear function prior < ) - —

to each sampling point. This assumption is most valid if the 2¢
system time-constant is smaller than the fall-time of the gate (Hl(wl, T)— "”T)

voltage. In practical cases where this is not true, the analysis - Hl(wz, ) — 92T dr, (40)

yields a limiting case and provides a useful bound. Now, the -

slope of the linearly varying is just the slope of the cutting A9iN. approximate:”* by its Taylor expansion, substitute

edgeV, minus the slope of the input signél to a first-order (38) to (40)

approximation. So, if we defing = (2KV¢)/Ty, whereVe  Ho(wy, wa, t

and 7y are as indicated in Fig. 1, and defige= —/t, the K \/* 1 e [

= Wiwso - - cC

]
1

MOS equation becomes r(erf(kr) + 1) dr

v, K , L dVy e
<9‘ i )Wd‘VS)‘E(Vd—Vs) O =0 o g | iy + 1) ar.
Let V, = Vi, Vy = V,, expandV, into its Volterra series as - (41)
before, and collect the first three order terms, we have .
4 Fortunately, at = 0, the last two integrals may be evaluated
g+ 02 — i, numerically
dt e b
d dVin K Hy(wy, wa) = — ~ )= 42
qua + C % - K yr (Ul _ Vm) + E (Ul _ Vin)2 2(0-11 UJQ) Wiwsa < C) /{;3 ( )
du dv: where b = 0.375 comes from the evaluation of definite
gus +C _3 =K —=tvg + K(v1 — Vin)va. integrals. (The relative contributions from the two integrals are

dt (37) comparable.) FinallyH5 is also obtained by its composition
To calculateH;, we use (31) where the time domdin(¢, ) from first- and second-order systems

is as found in (20). gg(wh wa, w3, t)
: : » f G »
0= [ mnea -/ exp<— I ds) B o
1 1 T o R 1 t K
:/_Ooexp<—/T @dﬁ)ic)e’ dr -T-HQ(wl,wg,'r)d'r—i—/_ooexp(—/T £C§')d§>5
_ /t ka2(727t2)(_2k27)6jm dr : (ﬁl(w?n T) — ijST) : HQ(wb wy, 7)dr. (43)

We need to evaluate the above expressiort fer0. Because
where the substitution of = — 3t andk? = 3/2C are made. each H, term contains two integrals, there is a total of
This integral cannot be evaluated analytically. However, weur definite integrals. By substituting the expression for
are interested in the value of the integral when close to 0, from (38), andH, from (41), we can evaluate the integral
so the upper limit of the integral is close to zero. The integramaimerically

is a rapidly increasing function of asr approaches 0; so, . K\? ¢
effectively, the only relevant portion of the integration is when Hiy(wy, wo, w3) = jwiwows - <5> s (44)
7 is close to 0. Therefore, we can assume tHat ~ 1+ jwr.
In this case, the integral becontes: where ¢ = 0.234. Equations (39), (42), and (44) are the
final solution to the sampled time-varying Volterra series. To
Hi(w, t) =1+ jwt _Jw\/z = ¥ (erf(kt) +1). (38) summarize the results in terms of circuit parameters
1/2
So, settingt = 0 gives H(w)=1-juw- \/§<E> a (45)
= K\ Vg
2 _ . 3/2
Hiw)=1 Jwﬁ L (39) Halor,o0) = —wron. g(g) b
K\ Vg

1Assuming the output side being source will give a slightly different

5/2
differential equation, but the form of the answer is the same i (w1, w2, ws) = jwrwsws - g ﬂ 5/ o @)
2The error function is defined as &tf = (2/\/7) fI e=*" da. 3\W1, W2, W) = JWrWatis V K\ Vg
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where againa = 0.886, b = 0.375, ¢ = 0.234 numerically. v
Recall that this result is obtained by assuming a linearly Vg
decreasing. In reality, g is nearly constant for a large part of
the sampling period. Therefore, this solution is an asymptotic
case.

Comparing the Volterra coefficients for the nonideal sam-
pling MOS track-and-hold mixer with the ideal sampling
case, at low frequency we find that nonlinearity due to the
time-varying nature is much smaller than the ideal sampling
case. However, time-varying distortion varies with the cube of
input frequency; so, theoretically, at high enough frequency,
the time-varying distortion will overtake the continuous-time
distortion. This happens at an RF frequency around 2-3 G|

Sampling Edge: e(t)

/ slope=2VG/Tf

P Input Signal: f(t)

ol t time

GHz. The fact that time-varying distortion is small at low Tt ,,‘
frequency can be intuitively explained. There are two sources
of nonlinearity from the MOS governing equation Fig. 5. Sampling error.

Ip = K(Vgs — Vi)Vps — gngs, f(@&) = f(0) + f'(0)t, and solve for the cutoff time

_ Yo =Vi = J(0)

An obvious source of nonlinearity is the square tetid, a+ f'(0)
but this effect is secondary for the ideal sampling case, where Ve —-Vi—f(0) 1 F(0)  f(0)2 48
the major contributing factor is the input signal dependent ~ @ T« + a2 (48)

conductancey = K(Vgs — Vi). However, in a nonideal sam-
pling mixer, the first-order signal dependence is eliminated
because sampling always occurs when, —V; = 0, hence the
local behavior ofg prior to cutoff is approximately same for
each sampling point. Then, the only nonlinear factors left are £ = f(0) — f(0)£(0) n <f”(0)f2(0) n f’(O)Qf(O))
the signal dependence in the derivative of the conductance anfu( o 202 a?

the V3 term, which are significantly smaller. However, we (49)
are not getting something for free here. Although in the cas% . . .

of a nonideally sampled mixer, thE&(Ves — V;) term causes where again the_ assumption of large is use.d. So, due
much less input dependencegnthe Vs term manifests as an to the finite fall-time, the sampled valug(t) differs from

altogether different source of distortion. Because cutoff occuﬁr{ desired valugf(0) by additional signal-dependent terms,

when Vs — V;, = 0, the cut-off time is now input signal which produce distortion. Since the sampling time is arbitrary,
—V, =0, .

dependent. In other words, the distortion in the amplituc‘é?his vglid i{ 'Eijmeo(ijs replaced Ey an alrbitrgryé sz;l/mﬁling time_.
domain is shifted to the time domain by nonideal samplin € signal dependence can be analyzed by Volterra Series.

The signal dependent cutoff time is called sampling erro ,he linear tgrm in (49) isf(0), SO.Hl.: 1..The second.—
which will be discussed in detail in the next section. order term is the product of derivative with the function
itself, and its Volterra series coefficient can be found using

the composition rule (21) followed by symmetrization. The

where we assumed that is large. Substitute the above
expression fort into the Taylor expansion foyf(¢) around
0, and collect the first three order terms, we have

IV. SAMPLING ERROR second order coefficient is found to be
In the development of time-varying distortion analysis in Ho(wi, wy) = _‘M (50)
sampled-data domain, the output voltage is assumed to be _ 20
sampled at equally spaced instants. This assumption is A€l for the third-order,
true if the gate voltage has a nonzero fall-time. The instance of "  (witws + ws)? 1
sampling is wherVg s —V; = 0, so the time at which sampling 3(wi, w2, w3) = T (51)

oceurs depends no_t only on gate voltag_e bgt al_so on tbﬁing these expressions in (3)—(6), harmonic distortion and
input voltage. The signal-dependent sampling time 'mmducﬁﬁermodulation can be calculated exactly
additional distortion term, which can again be quantified using

\Volterra series. HD, — A <@) (52)
Suppose the input signal is smooth—callfitt)—and we 4\ Vg

intend to sample the input at time 0. Let the gate voltage have 3A2 [ WTy 2

a finite-slope falling edge with slope, wherew = 2V /T} HDs = 32 <V_G> (53)

as shown in Fig. 5, i.e., the falling edge has the foeff) = My =0 (54)

Va — at. Since the MOS enters cutoff & — Vs =V, and ) 2
the input is applied at the source side, sampling occurs at the M5 = 4% <LTJ‘> ) (55)
instant whene(t) — V; = f(t). Now, use the approximation 32\ Vg
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Comparing the sampling distortion as given by (52)—(55) to -
the continuous-time distortion as given by (13)—(16), we can
show that the sampling distortion becomes comparable to the, |
continuous-time distortion when the fall-time is in the order

of V7T, wherer is the RC time-constant formed by the MOS
resistor and the load capacitor, dfids the period of the input -5
signal. Therefore, sampling error becomes a bigger problem at
high frequency, where has to be small. £

o—o HD2|
*———x  HD3 |

distortion
&
(=3

V. SIMULATION RESULTS AND COMPARISON TO THEORY

-70-

SPICE simulations are performed to verify the theoretical
results derived in the previous sections for the cases of
continuous-time, time-varying, and sampling distortion. The _g#—
three factors have to be combined in order to fully explain the
distortion of a track-and-hold mixer whose gate voltage has a T S : R
finite falling slope. TS e o 10t

Although RF is normally carried in the 900-MHz range, falltime nps
we start off the simulation at 100 MHz assuming the mixer i§g. 6. Harmonic distortion (HP and HD;) of a track-and-hold mixer
used in a first-stage IF digitizer application. The track-and-hoY§sus fall-ime at 100 MHz (body effect excluded).

mixer is fed with either a single tone or two tones near 100 | q il 4 th i d This h
MHz at its IF input. For example, to estimate intermodulatio nly need to simulate around the sampling edge. This has

distortion, two tones at 100.3 and 100.4 MHz are applied | gen accomplished by repeated simulations at uniform phase

the IF input, and a 100-MHz square-wave sampling clock latervals of the input sine-wave for a total phase interval of

applied at the gate. Consistent with our standing assumptioﬁg,o)’ which corresponds to exactly one period of the mixed

the RC time-constant duringN period has been chosen to own frequency.
be approximately 20 ps, and therefore much smaller than tge

5 nsoN period of the sampling clock. Finally, we note that

the results presented in this section are applicable in the RFI9- 6 plots the second- and third-order harmonic distortion
frequency range as well. of a track-and-hold mixer with a MOS switcW/L of 102

»+»m/0.8,:m. The sampling capacitance is 0.2 pF. An additional
A. Simulation Accuracy and Speedup capacitance of 0.152 pF is added to account for source/drain

A number of precautions have to be taken to ensure nﬁ:_\pacitance. A square-wave with fall-time varying between 10

merical accuracy, convergence, and charge conservationpﬁf"‘nd 1.28 ns is applied at the gate. In this simulation, the
the simulations. The simulation accuracy has to be calibrat2ff|CE model parameter gamma has been set to 0 to exclude
with ideal sine tones and simple linear models. The maximuiHPStrate bias modulation of the threshold voltage. The HD
time-step value and time-step update algorithm also haveG§Ve can clearly be divided into three regions:
be chosen consistent with the dynamic range to be expected) a relatively flat portion corresponding to small fall-times
from simulations. The time-step parameter (delmax) is crucial  UP to a few tens of picoseconds;
in determining simulation accuracy. Our experience shows2) @ region with distortion decreasing with fall-time and
that a delmax as low as 0.1 ps is necessary to achieve having a distinct minimum; and
reasonably accurate results. Charge conservation is particularly) @ region with distortion increasing with fall-time occur-
difficult to achieve. It depends on the level of the MOS model  fing for large fall-times and with a distinct slope of 20
chosen, the MOS device capacitance (capop) model, and the dB/decade for HR and 40 dB/decade for HD
integration method. Our experience has been that the charg®egion 1 shows an asymptotic behavior toward O fall-
conservation models (capoep 4 and capop= 9 in HSPICE) time. This asymptotic distortion value agrees with the predic-
either have poor convergence properties or produce numeritah from continuous-time (time-invariant) harmonic distortion
inaccuracy. We have bypassed the charge-injection and chamedel (13)—(16). This is to be expected since we have shown
conservation problems by calculating the device capacitandesSection |l that for fall-time of 0, the harmonic distortion of
separately and inserting linear capacitances into the circuit ahé MOS track-and-hold distortion approaches the continuous-
using a no-capacitance (capep 5) model. Without these time harmonic distortion.
precautions, the simulation results can be rendered totallyRegion 3 displays asymptotic behavior toward a log-linear
useless. relation that increases at 20 dB/decade for .HBnd 40
SPICE simulation for very small values of delmax cadB/decade for HR. This line agrees exactly with the distortion
make the simulation time impractically long. A major factor irpredicted by sampling error (52)—(55). Hence, for large fall-
speeding up simulation has been the insight that the RC tintenes, harmonic distortion is limited by sampling distortion.
constant during theN period of the MOS transistor is much Region 2 can be explained by time-varying distortion of a
smaller than theoN period. Thus, since the circuit reacheMOS track-and-hold mixer at whose gate a nonzero fall-time
steady state within only a tiny fraction of the period, we magampling signal is applied. In Section lll, it was pointed out

Harmonic Distortion
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distortion HDG indB
distortion in dB
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Fig. 7. Effect of input frequency on harmonic distortion filbody effect Fig. 8. Intermodulation (IM and IMs;) of a track-and-hold mixer versus
included). fall-time at 100 MHz.

that for the case of nonideal sampling, if sampling error nd 100.4 MHz at the IF input and a 100-MHz sampling clock
neglected, harmonic distortion, now attributed to time-varyingt the gate. I resulting from the difference of the two
distortion, becomes very small. This is responsible for theput frequencies is very small. I which behaves in the
dip in distortion curve in region 2 since in this intermediateame trend as HJ) is shown. The distortion characteristics
region the fall-time is large enough so that contribution duggyain match very well with theoretical predictions both for
to the continuous-time operation is small, while at the sam@ntinuous-time formulas developed in Section Il and for
time the fall-time is small enough that sampling distortiothe sampling error distortion developed in Section IV. The
does not manifest itself. Overall, the simulation result shovissitial decrease in IM curve as the fall-time increases may
quantitative agreement with the theory in regions 1 and 3, abd explained by the system time-varying nature. In general,
gualitative agreement in region 2. intermodulation distortion is slightly worse than harmonic
In order to highlight the role of time-varying distortion, wedistortion, and they exhibit similar behavior with respect to
note that the third order sampling distortion is proportiondll-time.
to the square of the input frequeney. Thus, for large
fall-times, by reducing the input frequency we may be VI. BOTTOM-PLATE SAMPLING
able to reduce sampling distortion sufficiently enough for |n this last section, we solve for distortion in the bottom-
time-varying distortion to manifest itself over a widerplate sampling scheme as a practical application of the theory
window (i.e., region 2) of the sweep of fall-time. Converselydeveloped. The bottom-plate sampling scheme is shown in
by increasing the input frequency, sampling-distortion mayig. 9. The input is afVi,, and the output is taken as the
increase to the point that it completely swamps out thfifferential voltage betweenY and Y. During sampling,
time-varying distortion. This trend is confirmed in Fig. %he bottom transistor opens first, which effectively fixes the
which plots Hy versus fall-time for 25, 100, and 500 MHz.amount of charge on the sampling capacitor Then, the top
Body effect is included in these simulations. transistor opens, which fixes the voltage levelsXfand Y.
Thus, we have shown both by simulation and by the figure,C; is included as the junction capacitor of the
time-varying analysis that a region with a distortionop switch, which can be fairly large, and, is included as
smaller than the O fall-time asymptotic value predictethe junction capacitor of the bottom switch, which is typically
by continuous-time distortion exists, which explains thghuch smaller.
decreasing distortion and the minimum observed in this The main advantage of bottom-plate sampling is that it
region. The practical significance of this result is that thgliminates the charge injection problem. When a MOS tran-
distortion of a MOS track-and-hold mixer can actuallgistor turnsorr, the charges that comprise the inversion layer
be better than what would be predicted by time-invariagfe injected to either the source or the drain side. Which
continuous-time Volterra series theory by a proper choice side the charges go to depends on the relative impedance.
fall-time. Note that this does not occur for Hand IM, in In the track-and-hold mixer of Fig. 1, the impedance on the
this particular case because sampling distortion is bigger thamput side {/jwC;) is small, so it attracts the extra charges,
the continuous-time distortion even for small fall-times. which disturb the output signal level. This does not happen in
bottom-plate sampling. At the opening of the bottom transistor,
charges are injected to the ground, while at the opening of the
Fig. 8 shows the intermodulation distortion of the MOSop plate, the charges are injected back to the input. In either
track-and-hold mixer obtained by applying two tones at 100c&se, little extra charges are dumped to the sampling capacitor.

C. Intermodulation Distortion



YU et al: DISTORTION ANALYSIS OF MOS TRACK-AND-HOLD SAMPLING MIXERS 111

9 X
-
Vin
L *
Vi C'_L Vo — C,
L
VO

Y
- — CS
1 ¢
Y Cp f— .——Q
C —— l—" ¢ R -

Fig. 10. Simplified bottom plate sampling.

switch, as given by (14)—(16). In particular,
Fig. 9. Bottom plate sampling.

A2 jw(Cs +C))
HDy = = . o T 230 59
L ) ) °T 4 K (Ve - V)3 (59)

To analyze this circuit, we first model the transistors as A2 jw(C, +Cy)
simple switches. It is easy to show that the output voltage can IM3 = — 2 _d (60)

4 K \(Vog—-V)?
Note that the continuous-time distortion is determined by the
v — < C, ) Voot & < Cp ) Vi (56) (W/L) ratio of the top transistor. S
C, +C, C, +C, Finally, we need to take the time-varying distortion into ac-
count. The difficulty is that we have a second-order differential
guation with nonconstant coefficients for which solutions are
ot easily found. However, the situation may be simplified.
hen the bottom switch opens, the resistance between the
urce and the drain increases with time and eventually reaches

be expressed as

where Vioiom and Vi, are the voltages at nod& when

the bottom switch and top switch each opens, respective
The total distortion in the output is, therefore, the sum of tw,
factors, one due to the opening of the bottom switch, E

Lhe (t)thtehr dt\L,Jve to tthe r(: pelndlnbg of trlle t%p SW'tCht' ID'Séort'r? ﬁfinite; but the top switch stays closed, hence its resistance is
ue 1o the two parts should be analyz€d separately. £ac F?gfétively small. So we can neglect the top switch altogether

V.VOUId copsist .Of th_ree factors: the coptinupus qlistortion, ﬂ}%d simplify the problem to that in Fig. 10. With only one
time-varying distortion, and the sampling distortion. capacitive node, this circuit is modeled by a first order equation
which we can solve.

We are ultimately interested in the differential voltage

We first notice that the sampling error is small in openinX—Y"). But since nod€X is purely sinusoidal, the distortion in
the bottom switch. This is because the source and the drain(&FY") is same as the distortion . Let V,, be the voltage in
the bottom switch are kept at a constant voltage at the groumadeY . The differential equation for the system is as follows:
level. This eliminates signal-dependent sampling. dv d

A. Distortion in Opening Bottom Switch

Next, the continuous-time distortion can be calculated from gu1 +(Cp +Cs) dtl =G, dt Vin
the coupled differential equations. Assume that both transistors dvy Ko
are in the triode region with device constatg and K>, gv2 +(Cp + Cs) el (61)
respectively. Defing; = K1(Vg, — V) andgs = Ks(Vg, — dvs
V). The governing equations are gvs +(Cp +Cs) =~ = Kzvi02
K K dx dy where againV, = vy +v2 +vz+ -+, andg = K> (Vg — V3).
91(Via = X) = 71 Vi + 71 X2 =0, a Cs at Using the methodology developed in Sect(ion v, 2[ime-
Ko, dx dy varying distortion may now be derived. Note here we have
g2¥ — Y =0 - (Cs +Cp) prs d/dt at the right side of the first-order equation, which must
(57) be kept as an operator in the derivation, i.e.,
where X andY are the voltages on the nodésandY. We tg(é) C d
assume the Volterra series expansions ht, 7) = exp<—/ s d§> <7S> —
’ s Cp+Cs Cs+Cp, ) dr
X(t) =Hq[Vin(H)] + H2[Vin(£)] + H3[Via(t)] + - -- and .
Y(t) =Gr[Vin ()] + Ga[Vin(®)] + Gs[Via(D] + . (88)  H,(w, 1) = / h(t, 7Y dr
If we assume thay; > jwC, and g > jwC,, the output t Eg(é)
of interest,H,, — G,, is close to the case without the bottom = / eXP<—/ . 5)
H H H 3 —00 T r + CS
transistor. This is not unexpected becausg's are almost
independent ofy;, and H,, is much larger thar7,,. So, H,, <L)i T (62)
in this case is the same &5, in the case without the bottom Cs+Cp ) dr
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After carrying out the necessary computation, the final exprestal distortion is a linear combination of the two as in (56).
sions for time-varying distortion turn out to be

C a HD; = <L) . A_2 . M
8 I4 2
C? b + L . 3_’42 w_Tf (71)
HQ(CUl, CUQ) = —Wiwsg - KQ . m . k—g (64) Cs —|— Cp 32 VG
SC3P c IM _<L)A_2M
Hg(wl, w2, wg) :jw1w2w3 - K22 - m - E (65) 3= CS + Cp 4 Kl(VG — Vt)?’
8 2 2
where k is related to fall-time as defined before, and= + <L) . A_<LTJ‘> ) (72)
0.886, b = 0.375, ¢ = 0.234 numerically. Again, these Cs+Cp) 32\ Vo

dls_lfﬁmo? componre]ntsk,_) are small_. h f I Therefore, distortion for a bottom-plate sampler at small fall-
. e(rje_ ore, as .t i ot(tjor(r; BWItg- opens, o(rj a 5(;“‘; ?]QFme is bounded by the continuous distortion, and distortion at
time, distortion s bounded Dby distortion produced by t Farge fall-time is bounded by sampling distortion. The major

continuous-time operation as express_ed in.(59) gnd (60). Sing erence between this and the simple case of the track-and-
b_Oth the time-varying and t.he s_,ampllng distortion areé SMatls|d mixer is that the distortion due to sampling (when the top
distortion due to bottom switch is small at large fall-times. o .. opens) is lessened by a factor@f/(C, + C,), which
is significant. So, distortion due to nonzero fall-time is less a

B. Distortion in Opening Top Switch problem in bottom-plate sampling than in the simple case of

The distortion analysis for the top switch is considerabllig- 1. This is another advantage of bottom-plate sampling.
simpler. This is because when the bottom switch is open,
the circuit is identical to the case in Fig. 1, except that the VIl. CONCLUSIONS
capacitor is primarily due to parasitics. The distortion again
consists of three parts: continuous-time, time-varying, ar?g
sampling distortion.

The continuous-time distortion is given by (13)—(16)

The operation of a MOS track-and-hold circuit as a mixer
explained. It is shown that conventional nonlinear time-
invariant analysis using Volterra series, while useful for
explaining the behavior of the circuit for ideal sampling
A2 jwC clock waveform, fails to account for its behavior for nonzero

HD; = —- - (VG - VP (66) fall-time of the sampling clock. The theory of time-varying
A2 ' ,,GC i Volterra series is developed and applied to the MOS track-
M5 = J (67) and-hold circuit in sampled-data domain. Expressions for

4 Ki(Vo—-V)? harmonic and intermodulation distortion for nonzero fall-time
LO waveform are derived. Nonzero fall-time also introduces
sampling distortion for which distortion formulas are derived.

C,C, SPICE simulation on the track-and-hold sampling mixer is
= CSTCP +Cj. (68) performed, and the results are successfully explained for all
fall-times by combining the theories of continuous-time, time-
Since the capacitor in this case is primarily due to the parasi@rying, and sampling distortion. Finally, the practical scheme
which is much smaller than in the single switch case, ti bottom-plate sampling is analyzed.
continuous-time distortion is small. The sampling distortion

where the capacito€ is

is the same as before, as given by (52)—(55) ACKNOWLEDGMENT
2 2 The authors wish to thank an anonymous reviewer for

3A wa . . . . .

3=—no | =L (69) correcting a numerical error in the derivation.
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