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Abstract

This paper investigates the condition for duality between the achievable rate regions
of the indirect distributive source coding problem and the broadcast channel. It has been
shown previously that crucial to the existence of duality are two simultaneous Markov
conditions that the joint distribution must satisfy. In this paper, we illustrate that the
Markov conditions are satisfied if and only if distributive coding achieves the same sum
rate as centralized coding under the same joint distribution. Thus, duality is closely
related to the value of cooperation. Duality exists if and only if cooperation does not
help. Several classes of channels in which duality exists are illustrated as examples. They
include a generalization of a previous result on Gaussian multi-terminal source coding
and a novel discrete memoryless broadcast channel for which Marton’s achievable rate
region is optimal at the sum rate point.

1 Introduction

For point-to-point discrete memoryless channels and discrete memoryless sources, it has been
known since Shannon that channel coding and source coding can be thought of as duals of
each other. The channel capacity problem is a maximization of a mutual information between
the channel input and the channel output. The rate-distortion problem is a minimization of
a mutual information between the source and its reconstruction. With the identification of a
proper test channel, the two mutual information expressions are the same.

Does the duality between source and channel coding extend beyond the point-to-point
setting? Toward this direction, Cover and Chiang [1] illustrated that the mutual information
expressions for channel coding with side information at the encoder and source coding with side
information at the decoder are duals of each other. However, as Pradhan and Ramchandran
[2] pointed out, duality truly exists only when the underlying joint distributions of the two
problems are identical, which happens only if two sets of Markov chains are simultaneously
satisfied. In [3], Pradhan and Ramchandran further generalized the idea to distributive source
coding and broadcast channel coding problems. In distributive source coding, two source
encoders describe two sources separately and a joint decoder attempts to reconstruct both
sources at the receiver. In a broadcast channel, a single transmitter sends multiple messages
to separate receivers at the same time. Pradhan and Ramchandran showed that the sum rate
expression for the distributive source coding problem is the dual of the sum rate expression

∗This research is supported by the Natural Science and Engineering Research Council (NSERC) of Canada
under the Canada Research Chair program and through a discovery grant.



for the broadcast channel. Again, duality exists whenever the two underlying probability
distributions satisfy two Markov chains at the same time.

The distributive source coding problem described in [3] is often referred to as the “direct
coding” problem [4] in the study of so-called “CEO” problem [5] [6] [7] [8]. In [9], Viswanath
considered duality for the “indirect coding” problem, in which two correlated observations of
a single source are encoded by two encoders separately. While restricting to the Gaussian
case, Viswanath showed that the crucial simultaneously Markov chain condition is implied by
the recent results on Gaussian vector broadcast channel sum capacity [10] [11] [12]. Thus,
corresponding to each Gaussian vector broadcast test channel, there exists a vector Gaussian
CEO problems for which the solution can be readily derived.

This paper further studies the “indirect coding” problem and generalizes Viswanath’s result
to discrete memoryless broadcast channels. First, a duality between the achievable rate region
for indirect distributive coding of a general source and Marton’s region for a general broadcast
channel is illustrated under a simultaneous Markov condition, similar to the approach taken
in [3] [9]. The rate region for the source coding problem is a generalization of the earlier
work by Berger and Tung [13] [14]. In addition, the simultaneous Markov condition is shown
to be closely related to the value of cooperation in distributive coding. Duality exists if and
only if distributive source (or channel) coding achieves the same sum rate as joint source (or
channel) coding. Finally, several classes of channels for which duality holds are illustrated as
examples. They include a generalization of Gaussian distributive source coding problem stud-
ied by Viswanath [9] and a novel discrete memoryless broadcast channel for which distributed
receivers achieve the same sum rate as a centralized receiver. This broadcast channel gives
another example for which Marton’s region is optimal at the sum rate point.

2 Distributive Source and Channel Coding

2.1 The CEO Problem

Consider the distributive source coding problem (or the CEO problem [5]) illustrated in Fig. 1.
In this problem, Y1 and Y2 are two correlated measurements of an underlying random variable
X, and they are encoded separately by two different encoders under rate constraints R1 and
R2, respectively. A joint decoder is interested in reconstructing X with the least amount of
distortion possible. This problem is sometime called the “indirect coding” problem in the CEO
literature [4]. The general rate-distortion region is still unsolved. In this section, we present
an achievable rate-distortion region for this problem.

The achievable region is based on a result by Berger and Tung [13] [14] for the “direct
coding” problem. In “direct coding”, Y1 and Y2 are correlated random variables to be encoded
separately, and the joint decoder is interested in reconstructing both Y1 and Y2 at the same
time. The achievable region for the “indirect” problem differs from the “direct” problem only
in the distortion constraint.

Theorem 1 (Berger-Tung for Indirect Coding) A distortion-rate inner bound for the in-
direct coding problem at a distortion level D is the set of all (R1, R2) such that there exists a pair
of random variables (U1, U2) with a joint distribution of the form p(x)p(y1, y2|x)p(u1|y1)p(u2|y2)
for which

R1 ≥ I(U1; Y1) − I(U1; U2); (1)

R2 ≥ I(U2; Y2) − I(U1; U2); (2)

R1 + R2 ≥ I(U1; Y1) + I(U2; Y2) − I(U1; U2), (3)

and a deterministic function X̂ = f(U1, U2) for which E[d(X, X̂)] ≤ D. Here, X is the



p(y1, y2|x)

Y1

Y2
X X̂

2nR1

2nR2

Encoder

Encoder

Decoder

Figure 1: The indirect distributive source coding problem
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Figure 2: Markov condition for distributive source coding

source to be estimated, X̂ is the reconstruction value, Y1 and Y2 are observations to be encoded
separately, and d(·, ·) is the distortion measure.

The proof of this theorem is via a random binning argument and via a Markov Lemma that
ensures that the joint typicality of (U1, U2, Y1, Y2) can be derived from the Markov condition
U1−Y1−Y2−U2. The Markov condition is illustrated in Fig. 2 and is crucial for the achievability
result to hold. In fact, given the Markov condition, the region simplifies to the following
equivalent form:

R1 ≥ I(U1; Y1|U2); (4)

R2 ≥ I(U2; Y2|U1); (5)

R1 + R2 ≥ I(U1, U2; Y1, Y2); (6)

This is the form that appeared in Berger and Tung’s original work.

2.2 Broadcast Channel

We are motivated to study the “indirect” version of the distributive source coding problem
because there is a clear duality between the “indirect” coding problem and the broadcast
channel. In a broadcast channel, a joint encoder transmits independent information to multiple
uncooperative receivers at the same time. (See Fig. 3.) The capacity region for the general
broadcast channel is still an open problem. The best achievable region is due to Marton. Let
p(y1, y2|x̂) be the channel transition probability for the broadcast channel. Marton’s region is
the set of (R1, R2) for which

R1 ≤ I(U1; Y1); (7)

R2 ≤ I(U2; Y2); (8)

R1 + R2 ≤ I(U1; Y1) + I(U2; Y2) − I(U1; U2); (9)

over a joint distribution p(u1, u2)p(x̂|u1, u2)p(y1, y2|x̂). It is possible to show that the optimal
p(u1, u2, x̂) always gives rise to a deterministic function X̂ = f(U1, U2). Thus, the random
variables involved can be represented graphically in Fig. 4. In particular, an arbitrary inter-
mediate random variable X can be inserted between X̂ and (Y1, Y2) as long as the Markov
condition is preserved.
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Figure 3: Broadcast channel
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Figure 4: Markov condition for the broadcast channel

3 Duality

There is a striking similarity in the achievable rate region expressions of the distributive source
coding and the broadcast channel coding problems, as shown in Fig. 5. The relation between
the two coding structures is also evident an inspection of Figs. 1 and 3. The source coding
structure is essentially a cyclic shift of the channel coding structure. The encoders of the
source coding problem are exactly the decoders of the broadcast channel problem, and the
decoder for source coding is exactly the encoder of the broadcast channel. However, for a
duality of coding theorems to truly exist, the underlying joint distributions in the two cases
would also have to be identical. The identification of the random variables is possible only if the
joint distribution satisfies both underlying Markov chain conditions simultaneously. When this
happens, a distributive source coding problem can be formulated based on the dual broadcast
channel by setting a distortion constraint D = E[d(X, X̂)]. Conversely, a broadcast channel
problem can be formulated based on the distributive source coding problem by setting the
appropriate channel probability p(y1, y2|x̂). Then, these two problems may be called the duals.
The main result of this section is the identification of a condition under which duality holds.
It turns out that duality is closely related to the value of cooperation.

Definition 1 If a joint distribution p(x, y1, y2, u1, u2) and a deterministic function X̂ = f(U1, U2)
factors in two different ways: p(x)p(y1, y2|x)p(u1|y1)p(u2|y2)p(x̂|u1, u2) and p(u1, u2)p(x̂|u1, u2)
p(y1, y2|x̂)p(x|x̂), then their respective distributive source coding and channel coding problems
are called duals of each other.

Theorem 2 If the distributive source coding problem and the distributive channel coding prob-
lem are duals of each other, then in both problems the sum rate for joint coding is the same as
the sum rate for separate coding.

Proof: First, let’s consider a broadcast channel for which the joint distribution satisfies the
two Markov chain conditions simultaneously. From the source coding Markov chain (Fig. 2):

I(X̂; Y1, Y2) ≤ I(U1, U2; Y1, Y2). (10)

But, by the channel coding Markov chain condition (Fig. 4):

I(X̂; Y1, Y2) ≥ I(U1, U2; Y1, Y2). (11)
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Figure 5: Duality of Marton and Berger-Tung achievable regions

For both to be satisfied, equality must hold. Now, in the broadcast channel, I(X̂; Y1, Y2) is
the cooperative upper bound for the sum rate. On the other hand, Marton’s rate region states
that I(U1; Y1) + I(U2; Y2) − I(U1; U2) is achievable. But, by the source coding Markov chain,
I(U1; Y1) + I(U2; Y2) − I(U1; U2) = I(U1, U2; Y1, Y2). As I(X̂; Y1, Y2) = I(U1, U2; Y1, Y2), this
implies that Marton’s achievable sum rate reaches the cooperative upper bound, and therefore
is optimal.

Conversely, consider the distributive source coding problem for which the joint distribution
p(x, y1, y2, u1, u2, x̂) satisfies the two Markov chains simultaneously. From the source coding
Markov condition (Fig. 2), we have:

I(X̂; X) ≥ I(U1, U2; Y1, Y2). (12)

But by the channel coding Markov chain condition (Fig. 4):

I(X̂; X) ≤ I(U1, U2; Y1, Y2). (13)

For both to be satisfied, equality must hold. Now, for the distributive source coding problem,
I(X̂; X) is a cooperative lower bound. On the other hand, Berger-Tung’s result states that
I(U1, U2; Y1, Y2) is achievable. Since the two are equal, this means that Berger-Tung’s sum rate
reaches the cooperative lower bound and is therefore optimal. 2

Lemma 1 Markov chains (X1, X2) − X3 − X4 and X1 − X2 − X3 imply X1 − X2 − X3 − X4.

Theorem 3 (Viswanath) If the sum rate of a broadcast channel achieves its cooperative
upper bound, then its joint distribution p(x̂, y1, y2, u1, u2) induces a dual distributive source
coding problem in which the sum rate achieves the cooperative lower bound.

Proof: This theorem is essentially the same as an argument made in [9] for the Gaussian
channel. The proof is presented here for completeness. Consider a broadcast channel with the
associated channel coding Markov chain, where X̂ is the input and Y1 Y2 are outputs. If a
joint receiver achieves the same rate as two separate receivers, then:

I(X̂; Y1, Y2) = I(U1; Y1) + I(U2; Y2) − I(U1; U2). (14)

From the channel coding Markov chain, the following chain of inequalities must hold:

I(X̂; Y1, Y2) ≥ I(U1, U2; Y1, Y2) (15)

= I(U1; Y1, Y2) + I(U2; Y1, Y2|U1) (16)

= I(U1; Y1, Y2) + I(U2; Y1, Y2, U1) − I(U1; U2) (17)

≥ I(U1; Y1) + I(U2; Y2) − I(U1; U2) (18)



Combining the above two results, it is clear that equalities must hold in (18). For this to
happen, the markov chains (U1, Y1) − Y2 − U2 and U1 − Y1 − Y2 must hold. By Lemma 1, the
two Markov chains imply U1−Y1−Y2−U2. This is exactly the Markov chain condition needed
in source coding. In particular, if X is chosen to be an intermediate step in X̂ −X − (Y1, Y2),
then a source coding problem for the random variable X can be formulated with the distortion
constraint E[d(X, X̂)] = D. Since the variable X is floating and the distortion constraint is
arbitrary, the source coding problem is not unique. Finally, as the dual source coding problem
automatically satisfies both Markov chains, the dual problem also achieves the cooperative
lower bound. 2

Conversely, it is also possible to derive a dual broadcast channel from a source coding
problem in which cooperative bound is achieved. The following elementary lemma is helpful
in proving the result.

Lemma 2 If random variables X − Y − Z forms a Markov chain and further I(X; Z) =
I(Y ; Z), then Y − X − Z also forms a Markov chain.

Theorem 4 If the sum rate of a distributive source coding problem achieves its cooperative
lower bound, then its joint distribution p(x̂, y1, y2, u1, u2) induces a dual broadcast channel
coding problem whose sum rate achieves its cooperative upper bound.

Proof: Since the sum rate of the distributive source coding achieves its cooperative lower
bound, then

I(X̂; X) = I(U1, U2; Y1, Y2). (19)

By the source coding Markov chain X−(Y1, Y2)−(U1, U2)−X̂ , this implies I(X, Y1, Y2; U1, U2) =
I(X, Y1, Y2; X̂). By Lemma 2, this implies (Y1, Y2, X) − X̂ − (U1, U2). Similarly, a symmetric
argument gives (Y1, Y2) − X − (X̂, U1, U2). Thus, (Y1, Y2) − X − X̂. By Lemma 1, the two
Markov chains imply

(U1, U2) − X̂ − X − (Y1, Y2). (20)

This is exactly the channel coding Markov chain. Thus, there is a dual broadcast channel
problem associated with the joint distribution p(u1, u2, x, y1, y2) and the deterministic function
X̂ = f(U1, U2), with X̂ as the input and (Y1, Y2) as the outputs. Further, since this joint dis-
tribution satisfies the two Markov chains simultaneously, the dual broadcast channel problem
achieves the cooperative sum rate bound. 2

To summarize, if a joint distribution satisfies both the distributive source coding Markov
chain and the broadcast channel Markov chain, then it induces a pair of dual source coding
and channel coding problems. Further, duality implies that the minimum rate for distributive
source coding is exactly I(X; X̂), and the maximum rate for the broadcast channel is exactly
I(X; Y1, Y2). Conversely, if the sum rate of a broadcast channel achieves the cooperative upper
bound, or if the sum rate of a distributive source coding achieves the cooperative lower bound,
then duality exists. Thus, duality exists if and only if separate coding performs as well as joint
coding. The duality of the achievable rate regions for the distributive source coding problem
and for the broadcast channel is illustrated in Fig. 5.

Note that in this paper, duality is interpreted for each fixed input distribution. We have
deliberately avoided input optimization for the following reason. Consider the maximization
of Marton’s achievable sum rate I(U1; Y1) + I(U2; Y2) − I(U1; U2) over p(u1, u2, x). Suppose
that the optimal distribution achieves I(X; Y1, Y2). Then, duality holds. However, this does
not necessarily imply that

max
p(u1,u2,x)

I(U1; Y1) + I(U2; Y2) − I(U1; U2) = max
p(x)

I(X; Y1, Y2), (21)



as the maximization of I(X; Y1, Y2) may yield a different p(x). Thus, the set of problems in
which joint coding achieves the same rate as separate coding under a fixed distribution is larger
than the set of problems in which joint coding achieves the same rate as separate coding under
their respective optimal distribution.

Finally, we caution that both the Marton’s region and the Berger-Tung’s region are only
achievable regions still. Converses have not been established in either case.

4 Examples

4.1 Deterministic Channel

Cover [15] pointed out that there is a duality between the deterministic broadcast channel and
the Slepian-Wolf problem. This duality can be interpreted in the current context as follows.
Consider a broadcast channel with deterministic outputs Y1 = f1(X) and Y2 = f2(X). Set
U1 = Y1 and U2 = Y2. It is easy to verify that the sum rate achieves the cooperative bound:
R1 + R2 = H(Y1, Y2) = I(X; Y1, Y2). In fact, both Markov chains are trivially satisfied. Thus,
there is duality. The dual source coding problem is the Slepian-Wolf [16] problem. Here, the
distortion constraint is zero, i.e. X̂ = X, and the minimum sum rate is precisely H(Y1, Y2).

4.2 Gaussian Vector Channel

We now interpret and give a generalization of Viswanath’s result for Gaussian multi-terminal
source coding [9]. For duality to hold, there must be no rate loss in the broadcast channel
problem. This is true if and only if the noise distribution is the least favorable [10] [11] [12].
Now, the noise in the broadcast channel is the sum of the noise induced by p(y1, y2|x) and the
distortion in the dual distributive source coding problem. Thus, for duality to hold, the sum
must be a least favorable noise.

More concretely, for a Gaussian vector broadcast channel y = Hx+z under a fixed Gaussian
input distribution N (0, Sxx). The worst noise can be found via a dual multiple access channel
with an appropriate input constraint. Let Ψ be the input covariance and λ be the water-filling
level in the dual channel. The worst noise is [17]:

Szz = H(HTΨH + λI)−1HT + S ′
zz, (22)

where S ′
zz is an arbitrary positive semi-definite matrix that makes the diagonals of Szz 1. Our

duality result implies that Szz may be split into

Szz = Snn + HSeeH
T , (23)

where Snn is the sensor noise and See is the actual distortion in the distributive source coding
problem, and a dual distributive source coding problem may be constructed. This is a gener-
alization of Viswanath’s approach in which Sxx is set to I and Snn is set zero. To construct a
realistic source coding problem with See as the actual distortion, a specific distortion constraint
needs to be imposed.

4.3 Write-Once Channel

Finally, we construct a discrete memoryless broadcast channel for which duality holds. The
construction is based on channels with non-causal side information available at the transmitter,
in which the capacity with transmitter side information only is the same as if side information
is also available at the receiver, i.e. I(U ; Y ) − I(U ; S) = I(X; Y |S). The memory-with-defect
channel [18] is one such example. Consider a memory chip in which occasional bits are either
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Figure 6: Write-once broadcast channel

stuck at 0 or stuck at 1, and where the location of stuck-at bits are known only at the transmit-
ter. In non-stuck-at locations, the input and output distributions follow a binary symmetric
channel with crossover probability ε. If the probabilities of stuck-at-0 and stuck-at-1 are equal,
then the capacity of the channel with the stuck-at locations known only at the transmitter is
the same as if the locations are also known at the receiver [18].

Now, consider a write-once memory. The memory locations are in an initial state i. Writing
a bit to a memory location changes its state to either 0 or 1. However, once written, a bit cannot
be changed. The transmitter wishes to communicate with two separate receivers using two
consecutive memory writes. The first receiver examines the memory after the initial memory
write. Then, the transmitter writes to the memory again, after which the second receiver gets
a chance to examine the memory. The output alphabet of the first receiver is {i, 0, 1}. The
second receiver, however, can only distinguish between {0, 1}.

If the first receiver can distinguish among states {i, 0, 1} perfectly, then the following strat-
egy seems sensible. The transmitter uses proportion p bits to communicate to the first receiver
at a rate H(p/2, p/2, 1 − p). Further, additional independent information can be communi-
cated to the second receiver via the defective memory channel at a rate (1 − p)(1 − H(ε)).
A careful examination reveals that such a broadcast channel in fact achieves its cooperative
upper bound. This can be verified, for example, using known results on broadcast channel
with one deterministic component [15].

A more interesting example is when the first receiver sees a corrupted version of the channel
state. More precisely, let the input of the write-once channel be (X, S), with an input alphabet
{0, 1} × {i, 0, 1}. The marginal dependence of Y1 on S is as follows. When S = 0 or S = 1,
then Y1 = S. When S = i, then Y1 = i with probability 1 − q, Y1 = 0 or 1 with probabilities
q/2 each. The output Y2 depends on both X and S as in memory-with-defect. When S = 0 or
S = 1 (the stuck-at states), then Y2 = S. When S = i, the distribution of (X, Y1) follows that
of a binary symmetric channel with crossover probability ε. For reasons that will be explained
later, we require q ≤ 2ε. Clearly, the transmitter must use S to communicate to Y1 and X to
Y2. As Y1 sees a better version of S, and Y2 sees a better version of X, this broadcast channel
is not degraded. Fig. 6 illustrates the write-once channel.

To use the memory-with-defect broadcast strategy, fix the input distribution as follows: let
p(s) = {p/2, p/2, 1−p} as shown in Fig. 6. Let p(x|s = i) = {1/2, 1/2}, p(x|s = 0) = {1− ε, ε}
and p(x|s = 1) = {ε, 1 − ε}. To convey information to Y1, the transmitter sets p proportion
of S to 0 or 1 and keeps the rest at state i. The capacity to Y1 is R1 = I(S; Y1). To convey
information to Y2, the transmitter sets the rest (1−p) proportion of S to 0 or 1, while regarding
the previously set states as stuck-at states. Using a memory-with-defect strategy, the capacity
to Y2 is R2 = I(U ; Y2)− I(U ; S) = I(X; Y2|S). (The optimal U turns out to be X in this case.)

The hope is that by choosing the joint distribution p(y1, y2|x, s) judiciously, this broadcast
strategy can be shown to achieve the cooperative upper bound. Clearly such a joint distribution



has to be a “worst” distribution as in Sato’s upper bound [19]. However, for this channel, the
worst distribution alone is not yet enough. Consider

I(X, S; Y1, Y2) = I(X, S; Y1) + I(X, S; Y2|Y1) (24)

= I(S; Y1) + I(X; Y1|S) + I(S; Y2|Y1) + I(X; Y2|Y1, S). (25)

For the above to be equal to I(S; Y1)+I(X; Y2|S), three conditions have be met: I(X; Y1|S) =
0, I(S; Y2|Y1) = 0 and I(X; Y2|Y1, S) = I(X; Y2|S). To construct a joint distribution for
which this is true, start with the condition I(S; Y2|Y1) = 0. We must have the Markov chain
S − Y1 − Y2, as shown in Fig. 6. The trick is to let some of the transitions be dependent on
X. In particular, let p(Y1 = k|S = i, X = 0) = p(Y1 = k|S = i, X = 1) for k = {0, 1, i}, so
that I(X; Y1|S) = 0. Also, let p(Y2 = 0|Y1 = i, X = 0) = p(Y2 = 1|Y1 = i, X = 1) = 1 − ε′,
and p(Y2 = 1|Y1 = i, X = 0) = p(Y2 = 0|Y1 = i, X = 1) = ε′, where ε′ is chosen to make the
marginal distribution p(y2|x) that of a binary symmetry channel with crossover probability ε.
This requires

q

2
+ (1 − q)ε′ = ε, (26)

(hence the condition q ≤ 2ε.) Finally, to satisfy the third condition I(X; Y2|Y1, S) = I(X; Y2|S),
notice that I(X; Y2|Y1 = 0, S) = I(X; Y2|Y1 = 1, S) = 0 since Y1 completely determines Y2.
This happens with probability q. With probability (1− q), I(X; Y2|Y1 = i, S) = 1−H(ε′). For
I(X; Y2|Y1, S) to be equal to I(X; Y2|S), which is 1 − H(ε), we require

(1 − q)(1 − H(ε′)) = 1 − H(ε). (27)

Thus, I(X; Y2|Y1, S) = I(X; Y2|S) only for a particular value of q that satisfies both (26)
and (27). For example, q = 0.1 and ε = 0.198 is such a choice. With such carefully chosen
ε, q and joint distribution p(y1, y2|x, s), the discrete memoryless broadcast channel can now
achieve the same sum rate with separate decoding as with joint decoding under a fixed input
distribution p(x, s). Note that the only condition on p(x, s) is that p(S = 0) = p(S = 1)
and p(X = 0|S = i) = p(X = 1|S = i). The optimal input distribution that maximizes
I(X, S; Y1, Y2) clearly takes this form. Therefore, maxp(x,s) I(X, S; Y1, Y2) is indeed achievable
using Marton’s broadcast strategy. However contrived, this is nevertheless a novel example for
which Marton’s strategy is sum-rate optimal, and it is a non-trivial extension of the Gaussian
vector broadcast channel result [10] [11] [12] where a similar proof technique is used.

Finally, we return to duality and illustrate the dual distributive source coding problem for
the write-once broadcast channel. Two separate encoders observe Y1 and Y2 after the first and
the second write, respectively. They individually compress their own observation and report
to a joint decoder under a sum rate constraint. The joint decoder is interested in determining
(X, S) with the least possible distortion. Since the broadcast channel achieves the cooperative
sum rate, the dual distributive source coding problem also achieves the same sum rate with
R1 = I(S; Y1) and R2 = I(X; Y2|S).

5 Conclusion

There exists a duality between the broadcast channel and the distributive source coding prob-
lem. However, duality exists if and only if the achievable sum rate is the same with or without
cooperation. The deterministic channel, the Gaussian vector channel with the worst-noise, and
the write-once channel are illustrated as examples. In general, however, examples of duality
are few and far between.
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