Duality and the Value of Cooperation in Distributive Source and Channel Coding

Wei Yu

Electrical and Computer Engineering Department University of Toronto

Email: weiyu@comm.utoronto.ca

October 2, 2003

Wei Yu

Source and Channel Coding Duality

- There is a duality between source and channel coding (Shannon 1959):
 - Fix a joint distribution p(x, y):
 - p(y|x) becomes a test channel; Encoder \iff Decoder.

Broadcast Channel

• Joint encoder, separate decoder:

 Solution known for degraded and deterministic broadcast channels. (Cover 71, Gallager 73, Bergmans 73, Pinsker, Gel'fand 79, Marton 79.)

General solution unknown.

Distributive Source Coding

• Separate encoders, joint decoder:

- Direct coding: Decoder estimates both Y_1 and Y_2 . (Berger, Viswanathan, 96, 97, Oohama 97, 98. Zamir, Berger, 99)
- Indirect coding: Decoder estimates an underlying X. (Oohama 98. Zamir, Berger, 99)

Known as the CEO problem. General solution unknown.

Duality of Distributive Source and Channel Coding

• Duality: Encoder \iff Decoder. $p(x|\hat{x})p(y_1, y_2|x)$ is the test channel.

Value of Cooperation

• Cooperative encoders/decoders usually do better:

When do non-cooperative encoders/decoders do as well?

Main Result

There are interesting examples for which duality holds.

Previous Work on Duality

- Pradhan, Ramchandran (ITW '02) considered "direct coding" problem
 - Duality exists iff the same joint distribution suits both problems.
 - This happens iff two simultaneous Markov chains are satisfied.
- Viswanath (DIMACS '03) considered "indirect coding" problem
 - Constructed a specific Gaussian example.
- This paper considers the general "indirect coding" problem.
 - Duality exists iff cooperative coding achieves the same sum rate as with no cooperation
 - We give a novel discrete memoryless channel example for which cooperation doesn't help.

Marton's Region for Broadcast Channel

• Discrete memoryless broadcast channel with Marton's binning strategy:

The following is achievable for any $p(u_1, u_2)p(\hat{x}|u_2, u_2)p(y_1, y_2|\hat{x})$:

$$R_{1} \leq I(U_{1}; Y_{1});$$

$$R_{2} \leq I(U_{2}; Y_{2});$$

$$R_{1} + R_{2} \leq I(U_{1}; Y_{1}) + I(U_{2}; Y_{2}) - I(U_{1}; U_{2})$$

Markov Condition for Marton's Region

• The joint distribution is of the form: $p(u_1, u_2)p(\hat{x}|u_2, u_2)p(y_1, y_2|\hat{x})$.

$$\begin{array}{c|c} U_1 & & Y_1 \\ & \\ & \\ U_2 \end{array} \hat{X} = f(U_1, U_2) - X & \\ & \\ & \\ & \\ & \\ Y_2 \end{array}$$

It must satisfy the Markov condition: $(U_1, U_2) - X - \hat{X} - (Y_1, Y_2)$.

Berger-Tung's Region for Distributive Source Coding

• Extending Berger-Tung's binning strategy to indirect coding:

Theorem 1. The following rate region is achievable for any fixed distribution $p(x)p(y_1, y_2|x)p(u_1|y_1)p(u_2|y_2)p(\hat{x}|u_2, u_2)$:

$$R_{1} \geq I(U_{1}, Y_{1}|U_{2});$$

$$R_{2} \geq I(U_{2}, Y_{2}|U_{1});$$

$$R_{1} + R_{2} \geq I(U_{1}, U_{2}; Y_{1}, Y_{2}),$$

Markov Condition for Berger-Tung

• The joint distribution is $p(x)p(y_1, y_2|x)p(u_1|y_1)p(u_2|y_2)p(\hat{x}|u_2, u_2)$.

It must satisfy the Markov condition: $U_1 - Y_1 - Y_2 - U_2$.

An Alternative Expression for Berger-Tung Region

• Using the Markov chain $U_1 - Y_1 - Y_2 - U_2$:

Theorem 2. The following rate region is achievable for any fixed distribution $p(x)p(y_1, y_2|x)p(u_1|y_1)p(u_2|y_2)p(\hat{x}|u_2, u_2)$:

$$R_1 \geq I(U_1; Y_1) - I(U_1; U_2);$$

$$R_2 \geq I(U_2; Y_2) - I(U_1; U_2);$$

$$R_1 + R_2 \geq I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2),$$

Duality of the Rate Region

Definition 1. If a joint distribution $p(\hat{x}, x, y_1, y_2, u_1, u_2)$ satisfies both Markov chain conditions, then their respective distributive source coding and channel coding problems are duals of each other.

Rate Loss in Distributive Coding

- Broadcast channel:
 - Cooperative decoder can potentially achieve higher rate:

$$I(\hat{X}; Y_1, Y_2) \ge I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2)$$

- Distributive source coding:
 - Cooperative encoder can potentially achieve lower rate:

$$I(X; \hat{X}) \le I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2)$$

Duality Implies No Rate Loss

Theorem 3. If duality holds, then in both broadcast channel and distributive source coding problems joint coding achieves the same sum rate as separate coding.

Proof: Both Markov chains are satisfied, so: $I(X; \hat{X}) = I(U_1, U_2; Y_1, Y_2)$.

For a distributive source coding problem, $I(X; \hat{X})$ is the lower bound. But, $I(U_1, U_2; Y_1, Y_2)$ is achievable. So, there is no rate loss.

Similar argument holds for the broadcast channel.

Wei Yu

No Rate Loss Implies Duality (1)

Theorem 4. [Viswanath] If the sum rate of a broadcast channel achieves its cooperative upper bound, then it has a dual distributive source coding problem in which the sum rate achieves its cooperative lower bound.

Proof: If broadcast channel achieves $I(\hat{X}; Y_1, Y_2)$, then, since

$$I(\hat{X}; Y_1, Y_2) \geq I(U_1, U_2; Y_1, Y_2)$$

= $I(U_1; Y_1, Y_2) + I(U_2; Y_1, Y_2, U_1) - I(U_1; U_2)$
 $\geq I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2),$

it must be that $(U_1, Y_1) - Y_2 - U_2$ and $U_1 - Y_1 - Y_2$. Therefore,

$$U_1 - Y_1 - Y_2 - U_2.$$

No Rate Loss Implies Duality (2)

Theorem 5. If the sum rate of a distributive source coding problem achieves its cooperative lower bound, then it has a dual broadcast channel with a sum rate achieving its cooperative upper bound.

Lemma 1. If X - Y - Z forms a Markov chain and I(X;Z) = I(Y;Z), then Y - X - Z also forms a Markov chain.

Proof of the Theorem: Since the source coding problem has no rate loss, then $I(\hat{X}; X) = I(U_1, U_2; Y_1, Y_2)$. By source coding Markov chain: $X - (Y_1, Y_2) - (U_1, U_2) - \hat{X}$, and repeatedly applying Lemma, we get

$$(U_1, U_2) - \hat{X} - X - (Y_1, Y_2).$$

This defines a dual broadcast channel problem, and it has no rate loss.

Wei Yu

Duality \iff **No Rate Loss**

- Fix a joint distribution:
 - Duality \implies Two Markov Chains \implies No rate loss.
 - No rate loss \implies Two Markov Chains \implies Duality.
- Disclaimer: Duality does not necessarily imply that

$$\max_{p(u_1, u_2, x)} I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) = \max_{p(x)} I(X; Y_1, Y_2)$$

- "Duality implies no rate loss" is for a fixed distribution only.

Examples

- Deterministic channels (Cover '98)
- Gaussian vector channels (Viswanath '03)
- A discrete memoryless channel based on memory with defects.

Deterministic Channel: Example (1)

• Deterministic broadcast channel: $Y_1 = f_1(X)$, $Y_2 = f_2(X)$.

• Slepian-Wolf problem: $R_1 + R_2 = H(Y_1, Y_2)$.

Gaussian Channel: Example (2)

• Dirty-paper coding:

$$R_1 = I(X_1; Y_1 | X_2);$$

$$R_2 = I(X_2; Y_2).$$

Sum Capacity

• Fix S_x , $I(X; Y_1, Y_2)$ is achievable with the worst-noise:

 $R_1 + R_2 = I(X; Y_1, Y_2)$, with worst-noise.

Source-Channel Duality in Gaussian Channels

• Duality exists iff $S_{nn} + HS_{ee}H^T$ is the worst-noise.

(This generalizes Viswanath's result, where $S_{nn} = 0$, $S_{xx} = I$.)

Discrete Memoryless Channel: Example (3)

Broadcast Channel Channel with Side Information

- When is $I(X; Y_1, Y_2)$ achievable in a broadcast channel?
- Idea: Construct a broadcast channel from channels with side information
 - Hope: $I(U; Y_1) I(U; S) = I(X; Y_1|S) \Rightarrow$ no rate loss.

Memory with Defect

- Set U = X. Then, I(U;Y) I(U;S) = I(X;Y|S)
 - Same capacity with or without state information at the receiver.
 - Heegard and El Gamal ('83)

Write-Once Memory

• How to use "write-once" memory twice?

- Write once to communicate with Y_1 , twice to communicate with Y_2 .

 $I(X, S; Y_1, Y_2) = H(S) + I(X; Y_2|S)$

Wei Yu

Duality for Write-Once Memory

• The "Write-once" broadcast channel has one deterministic component.

$$Y_1 = S$$
, $R_1 = H(S)$, $R_2 = I(Y_2, X|S)$

• The dual distributive source coding problem is a Wyner-Ziv problem.

Write-Once Memory with Imperfect State Information

• The first receiver Y_1 only gets an imperfect S:

• Is it still true that $I(X, S; Y_1, Y_2) = I(S; Y_1) + I(X; Y_2|S)$?

Condition for No Rate Loss for Write-Once Memory

• Want $I(X, S; Y_1, Y_2) = I(S; Y_1) + I(X; Y_2|S)$. But,

$$I(X, S; Y_1, Y_2) = I(X, S; Y_1) + I(X, S; Y_2|Y_1)$$

= $I(S; Y_1) + I(X; Y_1|S) + I(S; Y_2|Y_1) + I(X; Y_2|Y_1, S).$

$$- X - S - Y_1. - S - Y_1 - Y_2. - I(X; Y_2 | Y_1, S) = I(X; Y_2 | S).$$

Revised Write-Once Broadcast Channel

• Need to choose a worst noise distribution $p(y_1, y_2 | x, s)$.

• In addition, choose $p(y_2|y_1, x)$ to give $I(X; Y_2|Y_1, S) = I(X; Y_2|S)$. (Possible only for specific values of ϵ and q.)

Wei Yu

Duality Exists for Some Write-Once Channels

• For such specifically designed "write-once" channel:

$$R_{1} = I(S; Y_{1})$$

$$R_{2} = I(X; Y_{2}|S)$$

$$R_{1} + R_{2} = I(X, S; Y_{1}, Y_{2})$$

- There is no rate loss with respect to cooperative broadcasting.
- A dual distributive source coding problem exists, also with no rate loss.

Conclusion

- Duality exists between broadcast channel and distributive source coding
 - Duality holds if and only if there is no rate loss with respect to cooperative coding.
- Examples of duality:
 - Deterministic channel.
 - Gaussian vector broadcast channel.
 - Write-once memory channel.
- In general, cases of duality are few and far between.