1. **Differential Entropy**
 Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:

 (a) The Laplace density, $f(x) = \frac{1}{2} \lambda e^{-\lambda |x|}$.
 (b) The sum of X_1 and X_2, where X_1 and X_2 are independent normal random variables with means μ_i and variances $\sigma^2_i, i = 1, 2$.

2. **Gaussian Mutual Information**
 Suppose that (X, Y, Z) are jointly Gaussian and that $X \rightarrow Y \rightarrow Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_1 and let Y and Z have correlation coefficient ρ_2. Find (a) $I(X; Y)$, (b) $I(Y; Z)$, (c) $I(X; Z)$.

3. **Additive noise channel.**
 Consider the channel $Y = X + Z$, where X is the transmitted signal with power constraint P, Z is independent additive noise, and Y is the received signal. Let

 $$Z = \begin{cases}
 0 & \text{with probability } \frac{1}{10}, \\
 Z^* & \text{with probability } \frac{9}{10},
 \end{cases}$$

 where $Z^* \sim N(0, N)$. Thus, Z has a mixture distribution that is the mixture of a Gaussian distribution and a degenerate distribution with mass 1 at 0.

 (a) What is the capacity of this channel? This should be a pleasant surprise.
 (b) How would you signal to achieve capacity?

4. **Uniformly distributed noise.**
 The input and the output of the channel are related as $Y = X + Z$, where the noise random variable is uniformly distributed over the interval $-\frac{a}{2} \leq z \leq +\frac{a}{2}$.

 (a) Let the input random variable X be uniformly distributed over the interval $-\frac{1}{2} \leq x \leq +\frac{1}{2}$. Find $I(X; Y)$ as a function of a.
 (b) For $a = 1$ find the capacity of the channel when the input X is peak-limited; that is, the range of X is limited to $-\frac{1}{2} \leq x \leq +\frac{1}{2}$. What probability distribution on X maximizes the mutual information $I(X; Y)$?
 (c) Find the capacity of the channel for all values of a, again assuming that the range of X is limited to $-\frac{1}{2} \leq x \leq +\frac{1}{2}$.
5. **Exponential noise channels.**

\[Y_i = X_i + Z_i, \]
where \(Z_i \) is i.i.d. exponentially distributed noise with mean \(\mu \). Assume that we have a mean constraint on the signal (i.e., \(EX_i \leq \lambda \)). Show that the capacity of such a channel is \(C = \log(1 + \frac{\lambda}{\mu}) \).

6. **Fading Channel**

Consider an additive noise fading channel

\[
\begin{align*}
V & \quad Z \\
\downarrow & \quad \downarrow \\
X & \quad \oplus \quad Y \\
\end{align*}
\]

\[Y = XV + Z, \]

where \(Z \) is additive noise, \(V \) is a random variable representing fading, and \(Z \) and \(V \) are independent of each other and of \(X \). Argue that knowledge of the fading factor \(V \) improves capacity by showing

\[I(X;Y|V) \geq I(X;Y). \]

7. **The Two-Look Gaussian Channel**

Consider the ordinary additive noise Gaussian channel with two correlated looks at \(X \), i.e.,

\[
Y = (Y_1, Y_2), \quad Y_1 = X + Z_1, \quad Y_2 = X + Z_2
\]

with a power constraint \(P \) on \(X \), and \((Z_1, Z_2) \sim \mathcal{N}_2(0, K) \), where

\[
K = \begin{bmatrix}
N & N\rho \\
N\rho & N
\end{bmatrix}
\]

Find the capacity \(C \) for \((a) \ \rho = 1, (b) \ \rho = 0, (c) \ \rho = -1. \)

8. **Parallel Channels And Waterfilling**

Consider a pair of parallel Gaussian channels, i.e.,

\[
\begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix}
= \begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} + \begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix}
\]

where

\[
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix}
\sim \mathcal{N} \left(0, \begin{bmatrix}
\sigma_1^2 & 0 \\
0 & \sigma_2^2
\end{bmatrix} \right)
\]

and there is a power constraint \(E(X_1^2 + X_2^2) \leq P \). Assume that \(\sigma_1^2 > \sigma_2^2 \). At what power does the channel stop behaving like a single channel with noise variance \(\sigma_2^2 \), and begin behaving like a pair of channels, i.e., at what power does the worst channel become useful?
9. **Vector Gaussian channel.**
Consider the vector Gaussian noise channel

\[Y = X + Z, \]

where \(X = (X_1, X_2, X_3) \), \(Z = (Z_1, Z_2, Z_3) \), \(Y = (Y_1, Y_2, Y_3) \), \(E\|X\|^2 \leq P \), and

\[Z \sim \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{pmatrix}. \]

Find the capacity. The answer may be surprising.

10. **A Mutual Information Game**
Consider the following channel:

\[\begin{array}{c}
X \\
+ \\
Y
\end{array} \]
\[Z \]

Throughout this problem we shall constrain the signal power

\[EX = 0, \quad EX^2 = P, \]

and the noise power

\[EZ = 0, \quad EZ^2 = N, \]

and assume that \(X \) and \(Z \) are independent. The channel capacity is given by \(I(X; X + Z) \).

Now for the game. The noise player chooses a distribution on \(Z \) to minimize \(I(X; X + Z) \), while the signal player chooses a distribution on \(X \) to maximize \(I(X; X + Z) \).

Let \(X^* \sim \mathcal{N}(0, P); Z^* \sim \mathcal{N}(0, N) \). Show that Gaussian \(X^* \) and \(Z^* \) satisfy the saddlepoint conditions

\[I(X; X + Z^*) \leq I(X^*; X^* + Z^*) \leq I(X^*; X^* + Z). \]

Thus

\[\min_X \max_Z I(X; X + Z) = \max_X \min_Z I(X; X + Z) = \frac{1}{2} \log \left(1 + \frac{P}{N} \right), \]

and the game has a value. In particular, a deviation from normal for either player worsens the mutual information from that player’s standpoint. Can you discuss the implications?

Note: Part of the proof hinges on the entropy power inequality, which states that if \(X \) and \(Y \) are independent random \(n \)-vectors with densities, then

\[e^{\frac{2}{n} h(X + Y)} \geq e^{\frac{2}{n} h(X)} + e^{\frac{2}{n} h(Y)}. \]