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Abstract—This paper proposes a numerical method for char-
acterizing the rate region achievable with frequency-division mul-
tiple access (FDMA) for a Gaussian multiple-access channel with
intersymbol interference. The frequency spectrum is divided into
discrete frequency bins and the discrete bin-assignment problem
is shown to have a convex relaxation, making it tractable to nu-
merical optimization algorithms. A practical low-complexity al-
gorithm for the two-user case is also proposed. The algorithm is
based on the observation that the optimal frequency partition has
a two-band structure when the two channels are identical or when
the signal-to-noise ratio is high. Simulation result shows that the al-
gorithm performs well in other cases as well. The FDMA-capacity
algorithm is used to devise the optimal frequency-division duplex
plan for very-high-speed digital subscriber lines.

Index Terms—Bit loading, convex optimization, digital sub-
scriber line (DSL), discrete multitone (DMT), frequency division
duplex (FDD), frequency-division multiple access, frequency-
selective channel, intersymbol interference, multiaccess communi-
cation, orthogonal frequency division multiplexing (OFDM).

I. INTRODUCTION

I N A GAUSSIAN multiple-access channel, independent
senders simultaneously communicate with a single receiver

in the presence of additive Gaussian noise. The Shannon
capacity region of the multiple-access channel refers to the set
of simultaneous achievable rates ( ) at which
the receiver may decode information from each sender without
error. For example, the following is a two-user memoryless
Gaussian multiple-access channel

(1)

where and are the input signals under power constraints
and , respectively, is the output signal, and is the addi-

tive white Gaussian noise (AWGN) with a noise power-spectral-
density . The capacity region of this multiple-access channel
is a pentagon [1]:

(2)
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Fig. 1. The Shannon capacity region and the FDMA-capacity region of a
multiple-access channel.

(3)

(4)

where is the total available bandwidth. To achieve the ca-
pacity for a multiple-access channel, joint decoding at the re-
ceiver is needed in general. For the memoryless channel ex-
ample above, it is well known that the corner points of the ca-
pacity region are achieved with both users transmitting at the
same time and in the same frequency band. The combined sig-
nals are then separated at the receiver using a successive de-
coding technique, i.e., one user is decoded first, then its effect
is subtracted before the second user is decoded. Note that the
optimal transmission strategy for the multiple-access channel
requires the entire frequency band to be used by both users si-
multaneously and frequency-division multiple access (FDMA)
is not optimal except in special cases. In fact, the capacity region
corresponding to the FDMA strategy for a memoryless mul-
tiple-access channel is

(5)

(6)

where is the proportion of the total bandwidth used by the first
user. Fig. 1 shows both the rate region achievable with FDMA
and the Shannon capacity region. It is clear that the FDMA ca-
pacity region is strictly smaller than the Shannon capacity region
and FDMA is optimal only at a single point [2]. Incidentally,
this point corresponds to an FDMA strategy where each user’s
share of bandwidth is proportional to its respective power. The
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tangent line at this point is at 45 degrees and it corresponds to
the maximum sum capacity point.

These ideas can be generalized to the Gaussian multiple-ac-
cess channel with intersymbol interference (ISI). The capacity
region in this case was characterized by Cheng and Verdu [3].
The idea is to decompose the channel in the frequency domain
and to divide the channel into parallel independent memory-
less subchannels along the frequency dimension. For any given
power allocation over the subchannels, the achievable rate re-
gion is again a pentagon. The capacity region of the multiple-ac-
cess channel is then the union of the pentagons over all possible
power allocations. The union is not necessarily a pentagon and,
because each user has a different channel, finding the optimal al-
location of power over the frequencies is not a trivial task. The
optimal power allocation is different for different points in the
capacity region and it can only be found numerically [3]. In gen-
eral, the optimal spectra for the two users overlap in frequency
so again frequency-division multiple access is not optimal ex-
cept in special cases. It turns out that, as for the non-ISI chan-
nels, the special point in the capacity region where FDMA is
optimal again corresponds to the rate-sum maximization point.

Although not optimal in the information theoretical sense, the
frequency-division multiple-access technique is often desirable
from a practical implementation point of view. An FDMA trans-
mission scheme allows different users to occupy orthogonal di-
mensions, so they can be separated at the receiver without joint
decoding. This greatly simplifies the receiver design and it is es-
pecially suitable in the orthogonal frequency division multiplex
(OFDM) systems. For this reason, this paper will concentrate
on the frequency-division multiple-access technique. A system
using FDMA needs to assign different frequency bands to dif-
ferent users. However, when the channels have ISI and when
each user’s channel is different, finding the optimal allocation of
frequency among the different users is in general not easy. This
paper will focus on this problem and the objective is to numeri-
cally characterize the capacity region for the ISI multiple-access
channel with the FDMA restriction.

The study of FDMA-capacity region is motivated by the fol-
lowing problem in the design of very-high-speed digital sub-
scriber line (VDSL) systems. The VDSL system uses an ordi-
nary telephone twisted-pair to transmit high-speed data between
the central office and the customer premise. The twisted-pair is
a severe ISI channel. The upstream and the downstream trans-
missions in VDSL are separated by a frequency-division du-
plex (FDD) scheme. The VDSL system studied in this paper
uses a modulation scheme based on discrete multitone (DMT)
or OFDM which allows an arbitrary frequency division between
the upstream and the downstream. In an FDD design, it is natural
to optimize the partition of the upstream and the downstream
transmissions. It turns out that finding the optimal frequency
partition between the upstream and the downstream is exactly
the same problem as finding the optimal FDMA-capacity region
for a multiple-access channel with two users.

The idea of using FDMA as a possible joint signaling
strategy for two DSL modems has appeared in a related work
[4], where the problem of avoiding excessive near-end crosstalk
was studied. The authors concluded that FDMA should be

Fig. 2. A mulitple-access channel.

used when the crosstalk level is high, although the problem
of optimal frequency partition was not approached from a
power-constrained capacity viewpoint. The FDMA-capacity
problem also appears in the wireless OFDM context. For
example, Wonget al. [5] considered the problem of finding the
optimal frequency partition to minimize the total transmission
power in a mulitple-access OFDM system while satisfying a
minimum rate constraint for each user. This power minimiza-
tion problem is essentially the dual of the capacity problem
considered in this paper. So, the techniques proposed in [5]
are applicable here as well. In particular, [5] formulated the
problem as an integer programming problem and used the
idea of continuous relaxation to approximate the solution.
This same approach will be used here also. In another related
work, Hoo et al. [6], [7] considered the problem of finding
the optimal frequency partition to support several data streams
with different qualities of service (QoS) in an OFDM system.
In [6] and [7], several different problem formulations were
proposed along with a low-complexity suboptimal algorithm
to find the optimal solution. Although closely related, the
problem formulations in [6] and [7] have a common total power
constraint for all data streams, while the problem considered
in this paper has a separate power constraint for each user.
Nevertheless, the low-complexity algorithm proposed in [6]
and [7] turns out to be applicable in the present context. In
fact, one of the main results of this paper is to characterize
conditions under which the low-complexity algorithm applies.

The rest of the paper is organized as follows. The FDMA-ca-
pacity problem for the mulitple-access channel is formulated in
Section II. The problem is then shown to have a convex relax-
ation, thus allowing general convex programming algorithms to
be used to solve the problem numerically. Section III shows that
under two special cases the optimal two-user FDMA partition is
a two-band partition and proposes a low-complexity suboptimal
solution based on this result. Section IV describes the VDSL
duplex problem as a practical example and presents numerical
simulation results. Conclusions are drawn in Section V.

II. OPTIMAL FREQUENCYPARTITION

A Gaussian mulitple-access channel withusers is shown
in Fig. 2, where and denote the channel response and
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the noise process for theth user, respectively. The objective is
to characterize the capacity region under the restriction that the
power spectra for different users are nonoverlapping in the fre-
quency domain. Clearly, the FDMA-capacity region is a proper
subset of the capacity region without the FDMA constraint.

The capacity region is a concept that is used to capture the
tradeoff among the individual data rates for the different users in
a multiuser communication situation. The capacity region is de-
fined to be the set of rates ( ) simultaneously achiev-
able for all users. For the Gaussian mulitple-access channel, the
capacity region is convex. The tradeoff exists because system re-
sources are limited and different users compete for the limited
resources. The tradeoff is best characterized by solving a set of
optimization problems parameterized by a relative priority for
each user, ( ), where 0. More specifically,
the aggregate data rate

(7)

is maximized at a boundary point of the achievable rate region,
where the normal vector to the tangent hyperplane at this point
is ( ). Maximizing this aggregate data rate for all
possible ’s traces out the entire rate region. It is important to
recognize that solving for a single point in the rate region, such
as the maximum rate-sum point, is not sufficient. Consider the
case where one user has a much better channel than do all other
users. Maximizing the sum rate typically results in a rate com-
bination where the user with the best channel will have a much
higher rate than all other users. This may not be the desirable
operating point in a system design.

Mathematically, let and be the channel transfer
function and the noise power-spectral-density for theth user
in a Gaussian mulitple-access channel. The goal is to find the
optimal transmit power-spectral density for each user that
collectively maximizes some weighted sum rate subject to the
FDMA constraint. Using the Shannon capacity formula for the
Gaussian channel, the optimization problem can be expressed
as follows:

(8)

where is the power constraint for user. The constraint
0 guarantees that the power spectra for the dif-

ferent users do not overlap in frequency and it must be satisfied
for all and , . The key to solving the above problem is to
find the optimal partition of the frequency spectrum among the
different users. Once the frequency band assignment is fixed,
the optimal spectrum for each user is just the water-filling
spectrum within the assigned band. Intuitively, several factors
need to be considered in the frequency band assignment. First,

the user with a higher priority, , should be favored because
its rate has a higher weight in the objective. Secondly, each
frequency should be assigned to the user who can make the
best use of it. So, the user with a better channel-gain-to-noise
ratio, , should be favored at the frequency.
Thirdly, the user with a higher total power constraint should
be assigned frequencies more generously because it has more
power available and is able to use frequencies more efficiently.
So, in deciding the optimal frequency partition, it is necessary
to strike a balance among how good each channel is, how much
total power each user has, and the relative priorities among
the users. An example of such a compromise is captured in
the “equivalent channel” idea in [3]. In deriving the optimal
FDMA spectrum for the special case of maximizing the sum
rate, Cheng and Verdu showed that a balance can be found by a
proper scaling of the channel and the power constraint. In the
following, we will devise similar numerical algorithms for the
general case.

The first idea is to discretize the problem by dividing the
frequency spectrum into a large number of frequency bins of
finite width each. This allows a formulation of the problem in
a finite dimensional space. The channel frequency response
and the noise power-spectral-density are assumed to be flat
within each bin and as the number of bins increases to infinity,
this piece-wise constant channel model converges to the actual
channel. In this discretized version, the frequency partition
problem is reduced to a frequency-bin assignment problem. In
effect, the frequency partition boundaries between the two users
are now restricted to the bin boundaries. This is equivalent to
introducing new variables , where

or (9)

indicating whether or not theth frequency bin is used by theth
user. Here, is the width of the frequency bin. The FDMA
constraint then becomes:

(10)

which ensures that each frequency bin is used by one user only.
Unfortunately, this bin-assignment problem belongs to the class
of integer programming problems, for which an exact solution
usually involves an exhaustive search. An exhaustive search is
computationally prohibitive when the number of frequency bins
is large, so an efficient way to solve this problem is called for.

One approach to the integer programming problem is to ap-
proximate the problem by its continuous relaxation, which is
hopefully easier to solve. The difficulty in solving an integer
programming problem lies in the fact that the constraint set is a
set of isolated points. The idea of continuous relaxation is to en-
large the constraint set to include all convex combinations of the
original points. A convex constraint set can be dealt with much
more easily. This approach was taken in an earlier work [5] for
a similar problem. This trick is the following. Instead of forcing
the optimization variable to be either 0 or , constraint (9) can
be relaxed to:

(11)
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Fig. 3. Optimization with frequency-division multiple access.

Likewise, constraint (10) may be relaxed to

(12)

It is easy to check that the new constraints define a set of points
that are precisely the convex combination of all points satis-
fying the original constraints. In fact, instead of restricting the
boundaries of frequency partition to align with the bin bound-
aries, the boundaries are now allowed to be anywhere within
the bin, hence relaxing the integer programming problem into
a constrained continuous-variable optimization problem. As il-
lustrated in Fig. 3, each frequency bin can now be sub-parti-
tioned arbitrarily between the two users. Since the sub-parti-
tion is done in the frequency domain, this approach can also
be thought of as an exact formulation of the FDMA-capacity
problem for the case where the channel frequency responses and
the noise power-spectral-densities are piece-wise constant. Be-
cause piece-wise constant functions can approximate a contin-
uous function arbitrarily well, the solution to the continuous re-
laxation is expected to be close to the optimum as the bin width
becomes small. However, the continuous relaxation does not
necessarily yield a solution where is either 0 or . If such
integer solution is required, it is necessary to round the possibly
fractional values to 0 or . But this is rarely a problem if the
number of bins is large compared to the number of users. In fact,
as the bin width becomes small, at the optimum, almost every
bin except a few will be exclusively assigned to one user. This is
because the optimal frequency allocation usually involves only
a few frequency bands. When the width of the frequency bin is
less than the width of the narrowest frequency band in the op-
timal allocation, frequency bins in the middle of the bands are
fully allocated to one user only and those on the boundary of
the frequency bands are the only ones shared. As long as the
number of such shared bins is small, the boundary bins may
be assigned to either user arbitrarily without affecting the total
rate appreciably. An integer solution is often required in practice
because frequency-division multiple access can be naturally im-
plemented using OFDM where an IFFT/FFT pair together with
a cyclic prefix are used to perform the modulation and de-mod-
ulation functions. Each OFDM tone corresponds to a frequency

bin. In this case, because the FFT-size is fixed in advance, no
further subdivision of each tone is possible in the frequency do-
main. However, it is possible to subdivide the tones in the time
domain if the users can be synchronized. This interpretation was
given in [5].

Mathematically, the continuous relaxation of the bandwidth
assignment problem can be posed as follows. The entire fre-
quency band is divided into bins. Let and be re-
spectively the bandwidth and power assigned to the userin the
frequency bin . The objective is to choose and to max-
imize the aggregate data rate:

(13)

where is the total number of users, ’s are the relative pri-
orities for each user, and are the channel frequency
response and the noise power-spectral-density for the userin
the frequency bin, is the width of the th frequency bin and

is the power constraint for the user. If a power-spectral-den-
sity limit is also needed, the following additional constraint can
be added:

(14)

where is the maximum power-spectral-density for the user
in the frequency bin. This constrained optimization problem

is considerably easier to solve than the integer programming
problem. The key observation is that the objective function is
concave.

Lemma 1: The objective function in the optimization
problem above is a concave function in( ).

Proof: Observe that the objective function (13) is
a positive linear combination of functions of the type

1 , where 0 and 0. Since a
positive linear combination of concave functions is concave,
to prove the concavity of the objective, it is only necessary to
show that is concave in ( ) in the first quadrant.

A two-dimensional function is concave if and only if its re-
striction to any line is concave [8]. Let ,
then

(15)

is concave for 0 and this can be verified by taking its
second derivative:

(16)
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Consider three cases:

• 1 0: Since is nonnegative, the first term in
is nonnegative. The second term is negative. So, the

product is negative.
• 1 0: The numerator of the first term is

negative and the denominator is positive, so the first term
in is negative. The second term is positive because

is positive and 1 is negative. So, the product is
negative.

• 1 : In this case, both the numerator and the
denominator of the first term is negative, so the first term is
positive. The second term is negative since both fractions
are negative. Again, the product is negative.

The second derivative is always negative. So, is concave
when 0, is concave in the first quadrant and (13) is
concave in ( ).

Now, observe also that the constraints in the optimization
problem are linear. So the constraint set is convex and the opti-
mization problem takes the form of maximizing a concave func-
tion subject to a convex constraint. This is the standard form of
a convex programming problem. In convex programming prob-
lems, a local maximum is also a global maximum, so numer-
ical search algorithms such as the interior-point method are well
suited to obtain solutions efficiently [8]. In fact, many standard
software packages are available and the complexity of numer-
ical methods increases as a polynomial function of the problem
size. For this reason, once the problem is transformed into a
convex problem, it can be considered numerically tractable.

III. A L OW COMPLEXITY ALGORITHM

Although convex programming problems are numerically
stable and they can be solved much more efficiently than
integer programming problems, its computational complexity
still depends on the number of optimizing variables, which
in this case can be large if the number of frequency bins is
large. General-purpose convex programming algorithms take
advantage of the convexity of the problem, but it does not
otherwise explore the specific problem structure. Exploring the
problem structure can lead to intuitions on the structure of the
solution that are otherwise lacking in a purely numerical ap-
proach. Such intuition can lead to further reduction in problem
dimensionality and run-time complexity that are important if
spectrum allocation is performed dynamically. The idea is to
search through a subset of frequency partitions and hope that
the optimum in the subset is close to the global optimum. Such
an approach was previously taken in [6] and [7], where the
problem of finding the optimal frequency partition to guarantee
different qualities of service (QoS) for multiple data streams in
a single subscriber line is considered. The search algorithm pro-
posed in [6] and [7] assigns the better subchannels to the user
with a higher priority, and this was shown to be asymptotically
optimal. Although the FDMA multiple-access channel capacity
problem considered in this paper differs from those in [6] and
[7], the low-complexity algorithm proposed in [6] and [7] turns
out to be applicablle here as well under certain conditions. The
aim of this section is to characterize these conditions precisely
and to derive similar algorithms for the general case.

To gain some intuition, consider a two-user case where the
two users have identical channel transfer functions and noise
power-spectral-densities. First, consider the case where both
users have the same priority, i.e., the objective is to maximize

. Given a frequency partition, the optimal power alloca-
tion within each user is just the water-filling allocation. It turns
out that in the special case where the channels and the user pri-
orities are the same, the optimal FDMA partition is a partition
that results in the same water-filling level for both users [3].
This water-filling level can be found directly by water-filling
the common channel with the combined power. In fact, the op-
timal frequency partition is not unique in this case. For ex-
ample, each frequency bin may be divided into two halves in
proportion to the power constraints, or the sub-channels may be
divided into two contiguous bands. As long as the frequency
band boundary is chosen so that the two users have the same
water-filling level, the same maximum sum data rate is achieved
regardless of which user is assigned the better sub-channels.

The intuitive reason behind the above argument is that when
the two users have the same priority, the exact assignment for
each sub-channel is not important so long as each sub-channel
is fully utilized. This is not the case when the two users have
different priorities. In this situation, the two users do not have
the same water-filling level at the optimum and the sub-channels
cannot be assigned arbitrarily. Nevertheless, if the two users’
channel characteristics are the same, the optimal frequency
partition turns out to be a simple two-band partition. The optimal
frequency assignment always assigns the better sub-channels to
the user with higher priority. This is stated in the following result.

Theorem 1: Consider a two-user Gaussian mulitple-access
channel. Define the channel-gain-to-noise ratio as

, where 1 2 and 0 . Assume that
the channel-gain-to-noise ratios for the two users are the same,
i.e., . Without loss of generality, let be
monotonically decreasing, i.e., for . Then, the
optimal frequency partition maximizing , where

, consists of two frequency bands only. More precisely,
at the optimum, there exist and , 1 , such
that 0 and for all and
and 0 for all . Frequency bins beyond
are not used by either user. Only the variables and
may take values between 0 and .

This result is based on the Karush–Kuhn–Tucker (KKT) con-
dition for the optimization problem (13) with 2. Assume
a general channel model where is not necessarily equal to

for now. Form the Lagrangian as follows:

(17)
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where , , and are Lagrange multipliers which take
on positive values. The KKT condition is derived by taking
the derivatives of the Lagrangian with respect to and
and setting them to zero. Taking the derivative with respect to

gives the KKT condition corresponding to the usual water-
filling condition: there exist positive constants , such that for
all 1 2 and for all 1 , if 0, then

(18)

and if 0, then

(19)

Taking the derivative with respect to gives the second KKT
condition: for all 1 , if 0 and 0, then

(20)

The left-hand side of above equation can be interpreted as the
marginal benefit of extra bandwidth for user 1 in the frequency
bin . The right-hand side is the marginal benefit of extra band-
width for user 2 in the frequency bin. If a frequency bin is
shared between the two users, the marginal benefits for the two
users should be equal. If a frequency bin is exclusively used by
user 2, i.e., 0 and , then the left-hand side
should be strictly less than the right-hand side. Likewise, if a
frequency bin is used exclusively for user 1, i.e.,
and 0, then the inequality should be reversed1 . Because
the problem is concave, (18) and (20), together with the total
power constraints , total bandwidth constraints

and the positivity constraints on and
are the necessary and sufficient optimality conditions.

Equation (18) is the condition for the optimal power allo-
cation within each user. Fixing the frequency partition, the
condition is just the classical single-user water-filling condition
among the sub-channels in use. Equation (20) is the condition
for the optimal bandwidth allocation between the two users
while keeping the power allocation fixed. Equations (18)
and (20) together achieve a balance between optimal power
allocation and optimal bandwidth allocation. Equations (18)
and (20) are nonlinear and there is no analytic solution in
general. However, these conditions allow us to characterize the
structure of the solution. We are now ready to prove theorem 1.

Proof of Theorem 1:Let , be user 1 and user 2’s
respective water-filling levels at the optimal power and band-
width allocation. The objective is to prove that there exist

1There is a singularity in the KKT condition when! = 0. The KKT condi-
tion should be interpreted in the limiting sense. Note that! = 0 also implies
thatP = 0. A rigorous derivation of the KKT condition can be obtained by
replacing the constraint! � 0 with! � �, then letting� go to zero.

and such that the left-hand side of (20) is strictly less than
the right-hand side for 1 , the left-hand side of (20)
is strictly greater than the right-hand side for and
beyond , 1 and 1 . This would imply that
user 2 occupies the frequency bins below, user 1 occupies
the frequency bins between and and neither user uses
bins beyond .

If a frequency bin is shared between the two users, both (18)
and (20) need to be satisfied with equality. Substituting (18) into
(20) gives:

(21)
This equality is satisfied in each shared bin. If a bin is assigned
exclusively to user 2, the left-hand side of (21) is strictly less
than the right-hand side. If a bin is assigned exclusively to user
1, the left-hand side of (21) is strictly greater. Consider the dif-
ference between the left-hand side and right-hand side as a func-
tion of 1 , call it ,

(22)

When 1 0, the th frequency bin is assigned to user
2. When 1 0, the th frequency bin is assigned to
user 1. Therefore, when’s are sorted, every time crosses
zero, the frequency bin assignment switches from one user to the
other.

Consider user 2 first. We will show that the frequency as-
signment for user 2 is a single band. To prove this, it is only
necessary to show that has at most one root in the range
0 . The upper range is because user 2 only uses
frequency bins where 1 is less than its water-filling level .

Let . Consider two cases:

• : In this case, 0 and
0. Both and are increasing functions

of , so is increasing and can have only one root.
• : In this case, 0. By

differentiating , it is easy to verify that is strictly
increasing until it reaches a maximum after which point it
becomes strictly decreasing. So, can potentially have
two roots, one in the increasing segment and the other in
the decreasing segment. However it is easy to check that

1 0. So
cannot have decreased to zero at . Therefore, in the
range of interest , can only have one root.

In both cases, crosses zero only once. Since is sorted
from the largest to the smallest, there exists such that

1 0 for and 1 0 for . So,
the frequency bins 1 are used exclusively by user 2,
the frequency bin is shared by both users and the frequency
bins are not used by user 2 at all. To determine
the set of frequency bins used by user 1, water-filling can then
be performed on frequency bins . Since are
sorted, user 1 will use bins from 1 to some . Bins
beyond are not used by either user.
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Fig. 4. A typical two-band frequency assignment.

Fig. 4 illustrates a typical frequency assignment where the
better sub-channels are assigned to the user with higher pri-
ority. When the conditions of Theorem 1 are satisfied, all fre-
quency bins are exclusively assigned to either user 1 or user 2,
except the single boundary bin. When the number of frequency
bins is large, the data rate contributed by one frequency bin is
small. The boundary bin may be arbitrarily assigned to either
user 1 or user 2 to obtain a discrete assignment that is close
to the optimum. Theorem 1 suggests that to find the optimal
discrete frequency partition, for the case where the two users’
channels are the same, it is only necessary to search through
all two-band partitions. This is a considerable saving in com-
putational complexity compared to the general-purpose convex
optimization approach. In fact, the condition of Theorem 1 can
be somewhat relaxed. As the following theorem shows, when
the signal-to-noise ratio is high, even if the two users’ channels
are not the same, the two-band partition remains optimal.

Theorem 2: Consider a two-user Gaussian mulitple-access
channel. Without loss of generality, assume that is
decreasing in . If at the optimum frequency partition, the
signal-to-noise ratio, defined as 1, is much
larger than 1 in every frequency bin and for each user, then
the optimal frequency partition that maximizes
consists of two contiguous frequency bands with user 1 using
the lower frequency bins and user 2 using the higher frequency
bins.

Proof: At the optimum frequency partition, if 0
for the user in the frequency bin , the definition of SNR in
the theorem reduces to the conventional definition:

1 . Now, for the frequency bin to be
shared between the two users, (20) needs to be satisfied with
equality. Substituting the SNR definition into (20), we get

(23)

When a frequency bin is used exclusively by one user, the above
equality becomes inequality. If the left-hand side is greater than
the right-hand side, then user 1 should use the frequency bin
and vice versa for user 2.

At high SNR, the fraction 1 on either
side of (23) can be approximated by 1. Now, let and

Fig. 5. A multiband optimum.

be the respective water-filling levels for the two users at the
optimum, substitute (18) into (23), take the difference between
the left-hand side and the right-hand side of (23) and call the
function . To decide whether a frequency bin is used
by user 1 or user 2, it is only necessary to decide whether the
following function is greater than zero or less than zero:

(24)

Now, since is decreasing in and the logarithm is an
increasing function, is a decreasing function in.
Therefore, there exists such that 0 for
and 0 for . So the frequency bins below

are exclusively used by user 1. Following the same argument
as in the proof of Theorem 1, this implies that the optimum
partition is a two-band solution.

Assuming the SNR being much larger than 1 is equivalent
to assuming that the spectral efficiency is much larger than 1
bit/Hz in all frequencies. The intuition is that at a high SNR, the
structure of the optimum frequency partition does not depend on
the power constraints and it is solely a function of the channel
characteristics. This is not true at a low SNR. The following nu-
merical example illustrates a two-user three-frequency-bin case
where a multiple-band solution is the optimum. Here, the band-
width for each frequency bin has a width of 1 Hz. The power
constraints for the two users are 2 mW and 4.7 mW respectively.
The channel gain is 1 in all bins. The noise power-spectral-den-
sity in mW/Hz for the two users are (6, 7.145) in bin 1, (7, 11.1)
in bin 2 and (4, 3.738) in bin 3 respectively. The optimal fre-
quency partition and power allocation that maximize 2
are illustrated in Fig. 5. Note that the frequency bins are mono-
tonic in , but both frequency bin 1 and bin 3 are shared
between the two users. The SNR here is too low for Theorem 2
to hold.
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Theorems 1 and 2 suggest the following low-complexity
approach that finds a near-optimal frequency partition by
searching through a set of two-band partitions.

Algorithm 1 A low-complexity algorithm for
finding a near-optimal frequency par-
tition that maximizes :
1. Sort the sub-channels according
to from the largest to the
smallest. In case of a tie, sort fur-
ther according to .
2. For each 0 ,

• water-fill for user 1 using
frequency bins 1 to ,

• water-fill for user 2 using
frequency bins 1 to ,

• compute .
3. Choose the frequency partition
boundary to be the one that maximizes

.

The algorithm can be further improved using a binary search
on the boundary bin. Binary search is feasible because for each
bin , (20) can be used to decide whether the optimal boundary
is larger than or smaller than. Using a binary search, the
run-time complexity of the algorithm is because
sorting takes operations, each water-filling takes

operations on the sorted channels and there are at most
water-fillings to do. In practice, this sub-optimal

algorithm is much faster than general-purpose convex program-
ming algorithms. A special case of this algorithm ( )
was noted in [9]. Theorem 1 and Theorem 2 guarantee that
the algorithm will find a near-optimal solution either when
the two channels are the same, or when the SNR is high.
However, as the example in the next section illustrates, in
the context of finding the optimal duplex scheme for VDSL,
this low-complexity algorithm works well even when these
assumptions do not hold.

IV. OPTIMAL DUPLEX IN VDSL

The algorithm proposed in the previous section is now
used to solve the optimal frequency duplex problem in the
Very-high-speed Digital Subscriber Line (VDSL) systems.
VDSL is designed to carry high speed digital data over
copper-based twisted-pairs by utilizing the frequency spectrum
up to 20 MHz. While functional requirements for VDSL are
still being standardized, it is expected that symmetric data rates
up to 26 Mbps can be achieved on short lines (1000 ft), 13 Mbps
can be achieved on medium length lines (3000 ft) and 6 Mbps
can be achieved on long lines (4500 ft) [10]. Severe attenuation
at high frequencies produces strong intersymbol interference
in a twisted-pair channel. Discrete multitone (DMT) is the
modulation technique considered in this paper.

In the twisted-pair environment, the primary noise sources are
the crosstalk interference from the neighboring lines within the
same binder that carry other VDSL transmissions or other data
services such as ADSL or ISDN. The interference sources can

Fig. 6. Crosstalk in digital subscriber lines.

be assumed Gaussian, but the crosstalk coupling transfer func-
tions are frequency dependent. Each interference source pro-
duces the near-end crosstalk (NEXT) coupled into receivers lo-
cated at the same side as the source and the far-end crosstalk
(FEXT) coupled into receivers located on the opposite end of
the twisted-pair. A typical transmission situation is illustrated
in Fig. 6. NEXT interference is usually much larger than FEXT
and the presence of NEXT in VDSL is often large enough to pre-
vent VDSL transmission entirely. So, practical systems are de-
signed so that all VDSL modems transmit in the same direction
at the same frequency and time slot. This avoids NEXT entirely
and leaves FEXT as the predominant noise source. The FEXT
interference can be calculated by assuming that all interfering
modems are transmitting at the worst-case power-spectral-den-
sity (PSD) limit.

To allow bi-directional communication, a duplex scheme has
to be used to coordinate the transmissions in the two directions.
Time-division duplex (TDD) and frequency-division duplex
(FDD) are typical duplex methods. In time-division duplex,
the two modems transmit at alternating time slots and in fre-
quency-division duplex, the two modems transmit at different
frequency bands. The implementation of time-division duplex
requires precise synchronization between the two modems. The
latency in twisted-pairs could result a performance loss of up
to 20%. For this reason, frequency-division duplex was chosen
in the VDSL standard [11]. Frequency-division duplex usually
requires guard bands between the upstream and the downstream
bands. However, if a DMT system is used, it is possible to insert
a cyclic suffix to allow the synchronization of the upstream and
the downstream DMT-symbols. Such symbol-level synchro-
nization allows the upstream and the downstream modems to
use an arbitrary set of nonoverlapping DMT tones, thus making
arbitrary frequency assignment possible with no guard bands
in between [12]. The flexibility of the DMT system raises the
following question. With frequency-division duplex, which
set of tones should be assigned to the upstream transmission
and which set of tones should be assigned to the downstream
transmission? In fact, a range of services that require different
upstream and downstream transmission rates are often desired
in VDSL deployment, so it is desirable to find the exact tradeoff
between the upstream capacity and the downstream capacity in
a twisted-pair. The upstream and the downstream twisted-pair
channels usually have the same frequency response. However,
the two directions experience different crosstalk interference,
so the effective channel-gain-to-noise ratios are different.
Intuitively, each frequency bin should be assigned to the
direction with less noise, but the exact frequency assignment
also depends on the target rates. Previous attempts to solve this
problem resorted to an exhaustive search [13], [14]. The entire
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Fig. 7. The achievable rate region with frequency-division duplex in a 500-m
VDSL line.

frequency band is divided into bands and all 2 possible
upstream-downstream combinations are tried. Such an exhaus-
tive search is exponentially complex and a granularity beyond

32 is not feasible within a reasonable computation time.
However, because the upstream and the downstream transmis-
sions do not interfere into each other in a FDD-DMT system,
it is easy to observe that the optimal frequency duplex problem
is just the FDMA-capacity problem for the mulitple-access
channel. Thus, both the convex optimization approach and the
low-complexity algorithm presented in previous sections can
be used to solve this problem efficiently.

The capacity region using the frequency-division duplex
scheme in a typical VDSL environment is presented in the
following as an example. The simulation is performed on a
26-gauge 500 m copper twisted-pair with the standard ANSI
noise B which includes ADSL, ISDN, HDSL and T1 crosstalk
sources [15] and 20 VDSL far-end crosstalk sources computed
using the standard FEXT coupling function where the coupling
increases with frequency as [16]. A total power constraint
of 11.5 dBm and a power-spectral-density constraint around

50 dBm/Hz are imposed on all modems [10]. The frequency
range of 0 to 17.6 MHz is used, with the frequency spectrum
divided into 256 bins. The target probability of error is 10.
An uncoded QAM transmission scheme at the probability
of error 10 has an SNR gap of 9.8 dB from the Shannon
capacity. The SNR gap is a concept that connects the infor-
mation theoretical channel capacity with practical modulation
and coding methods. A gap of 9.8 dB means that to achieve
the channel capacity using uncoded QAM transmission, an
extra 9.8 dB of power is needed. With error correcting codes,
the gap is reduced by the coding gain. For the simulation
purpose, a coding gain of 3.8 dB is assumed. In practice, to
protect the system from nonstationary interference such as
impulsive noise, an additional noise margin of 6 dB is often
included. So, the effective gap assumed in this simulation is
9.8 dB 6 dB 3.8 dB 12 dB. This can be thought of as
a 12 dB increase in the noise power-spectral-density. Fig. 7

shows the achievable upstream and downstream rate region
for a 500 m VDSL line. The solid line represents the rate
region obtained by maximizing for various
values of ( ) using the convex optimization approach. A
nonlinear programming package MINOS [17] is used to obtain
the optimal frequency partition. The crosses are obtained by
searching through all two-band partitions as suggested by the
low-complexity algorithm in Section III. In this example, the
sub-optimal solution achieves at least 95% of the capacity in all
cases. This numerical example is typical in the VDSL optimal
frequency duplex problem.

In real systems, considerations other than data rate are also
important. Practical systems often have VDSL lines that carry
different upstream and downstream rates co-existing in the same
binder. The optimal frequency partition obtained above is, how-
ever, different for different rate combinations in the rate re-
gion. This poses a problem because directly mixing them in the
same binder would unduly create near-end crosstalk. In prac-
tice, therefore, it is necessary to find a universal partition that
is not necessarily optimal for each individual line, but would
represent a compromise among all service requirements [18].
The universal plan also has to be robust over all line configu-
rations. Line impairments such as bridged-taps and radio inter-
ference have to be taken into account in designing an optimal
frequency partition that works in all cases [19]. Also important
is the practical requirement that the VDSL frequency plan is
compatible with existing services such as ISDN and ADSL, so
that VDSL does not emit unacceptable interference in the trans-
mission bands of other services. All these considerations have
to be taken into account in the design of a universal frequency
plan. An acceptable band plan is often found by a combination
of engineering intuition and exhaustive search. For this reason,
the convex programming approach taken in this paper is most
valuable not in providing a numerical solution to the optimal
frequency partition problem for a specific situation, but in pro-
viding insights into the structure of the optimal solution for a
class of situations. The numerical solution itself is most useful
as a theoretical upper bound and a starting point for finding the
right compromise among the practical considerations.

V. CONCLUSION

This paper proposes a numerical solution to the FDMA-ca-
pacity region problem for a Gaussian mulitple-access channel
with intersymbol interference. The discrete frequency bin allo-
cation problem is shown to have a convex programming relax-
ation, thus allowing the optimal frequency partition to be found
with efficient numerical methods. A low-complexity bin-alloca-
tion method for the two-user system is also proposed. The algo-
rithm explores the problem structure and the solution is near-op-
timal when the two channels are identical, or when the signal-to-
noise ratio is high. The run-time complexity is ,
where is the total number of frequency bins. These numer-
ical algorithms are then used to solve the optimal frequency
duplex problem in VDSL. The duplex problem is posed as an
FDMA-capacity problem for the mulitple-access channel and
numerical examples are presented to illustrate the feasibility of
the proposed solution in this context.
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