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Abstract— We consider the problem of beamforming codebook
design for limited feedback half-duplex multiple-input multiple-
output (MIMO) amplify-and-forward (AF) relay system. In th e
first part of the paper, the direct link between the source
and the destination is ignored. Assuming perfect channel ate
information (CSI), we show that the source and the relay shola
map their signals to the dominant right singular vectors of
the source-relay and relay-destination channels. For theirhited
feedback scenario, we prove the appropriateness of Grassma
nian codebooks as the source and relay beamforming codebaok
based on the distributions of the optimal source and relay
beamforming vectors. In the second part of the paper, the
direct link is considered in the problem model. Assuming pefect
CSl, we derive the optimization problem that identifies the
optimal source beamforming vector and show that the solutio
to this problem is uniformly distributed on the unit sphere for
independent and identically distributed (i.i.d) Rayleigh channels.
For the limited feedback scenario, we justify the approprigeness
of Grassmannian codebooks for quantizing the optimal soure
beamforming vector based on its distribution. Finally, a maified
guantization scheme is presented, which introduces a neglble
penalty in the system performance but significantly reduceghe
required number of feedback bits.

Index Terms— Amplify-and-forward relaying, Beamforming,
Grassmannian codebooks, Multiple-input multiple-output sys-
tems.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology pro-

While a general purpose minimum mean-square error (MMSE)
guantizer can be used to quantize each channel matrix entry,
doing so requires a large number of feedback bits and it
does not preserve the structure of the optimal beamforming
vector [3]. A more efficient approach is to share a codebook
of beamforming vectors between the source and destination,
and send back the label of the best beamforming vector to
the source. For the case of flat Rayleigh fading channel, the
codebook design problem has been shown to be related to the
Grassmannian line packing problem [4, 5, 6].

In this paper, we generalize the idea of MRT-MRC to the
MIMO relay channel with an amplify-and-forward (AF) relay
station. A general information theoretic analysis of thev\ii
relay channel has been presented in [7] and [8]. Although
efficient signaling through the relay channel may require a
full-duplex relay with specific processing capabilitiesg(e
encoding/decoding), AF relays are still attractive duehteirt
lower implementation complexity. Moreover, the full-dapl
assumption cannot be realized by current technology, as the
input and output signals need to be separated in time or
frequency at the relay. For these reasons, this paper fecuse
on the half-duplex AF relay system.

The half-duplex MIMO AF relay channel has been consid-
ered in [9] and [10], where the authors present differenti-sol
tions for maximizing the instantaneous capacity with respe
to the weighting matrix at the relay. These papers assume no

vides a wireless system with a large number of degrees afannel state information at the source (CSIT) and consider
freedom, which can be used for increasing the capacity andimiform power allocation over the source antennas. The work
reliability of wireless channels. Relaying techniques,tba [11] assumes perfect CSIT and derives the optimal power
other hand, can extend the communication range and coveratiecation scheme for the source and relay by neglecting the
by supporting shadowed users with the help of relay nodéigect link. Finally, the authors of [12] and [13] study thense

and reduce the transmission power required to reach the uggpblem including the direct link.

far from the base station. These benefits make MIMO relayingOur problem setup is different from these papers in two

techniques a powerful candidate for implementation in #aet n major aspects: 1) The objective of the aforementioned ref-
generation wireless networks. erences is the maximization of the instantaneous capac-

Considering a system with a single data stream and perfégt our problem, however, can be categorized as a single-
channel knowledge at the destination, several methods eandimensional beamforming problem, where we optimize the
used to achieve the potential benefits of the MIMO channélurce beamforming vector, destination combining veetod,
Maximum ratio transmission and combining (MRT-MRCYelay weighting matrix to maximize the received signal-to-
technique [1] can achieve full diversity order while pravigl noise ratio. 2) These papers assume either no CSI or complete
considerable array gain compared to space-time codes @PBl. Our work, however, focuses on a “limited feedback”
This gain is achieved at the expense of obtaining chanrsgenario, where the receiver end of a link sends the properly
knowledge at the source, therefore, the destination needsjuantized channel state information back to the transmitte
send the quantized channel information back to the sourséle.

It should be noted that we assume perfect channel state
information at the receiver sides of the links (CSIR), ilee t
relay knows source-relay channel, and the destination know
source-destination and relay-destination channels. o@ifgh
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the source-relay channel information can be made avaitable z~CN(O, D
the destination, e.g. by forwarding the correspondinghingi
sequence to destination [14], we do not assume such knowl- xin VPH
edge in this paper. An extension of the current work with this
additional CSI assumption is presented in [15].

The structure of this paper is as follows. The analysisstaft9- 1. Beamforming over MIMO channel.
by first ignoring the direct link and deriving the correspomgd
optimal source and relay beamforming vectors. Based on the

distributions of these vectors for Rayleigh fading chasneie models the flat fading channel matrix, ~ CN'(0,1,) is

justify use of Grassmannian codebooks in the correspondi destination input noise vectc_)r, gmj, n are the number
quantization scheme. of"antennas at source and destination respectively. It ean b

In the second part of the paper, we include the direct "gg?own that the source beamforming vector which maximizes

in the system model. As expected, one needs to know b received SNR is the dominant right singular vector of

source-relay and source-destination channels to deterthan ~’ l.e. the right singular vector corresponding to the larges

optimal source beamforming vector. We assume that su%'ﬁgwar value oft. The resulting (maximized) SNR is equal

e 5.2 . )
knowledge is available (for example at the relay). We the: v Ra fqlhv}'hg_real |hsthe Ilarge:§|ntgr]ular_vall1e & Ftor
derive the optimization problem that characterizes thémadt € t?y elgh a 'rt'g bC an_r;e n;a(;_ t"b f jmgl:har Ve.f Orﬁ
source beamforming vector. Although this problem does nB?Ve een shown to be uniformly distriouted on the unit Sspher

appear to have an analytic solution, we are able to show t C: (S((ajetrES![’ tr[116]b). Bafsed on thijs gaCtl’( the SutZors of d
for i.i.d. Rayleigh channels the solution to this problem i showed that the beamiorming codebook can be designe

uniformly distributed on the unit sphere, based on whick, tl,?ccording to the criterion of the Grassmannian line packing

h . . lem, which is described below.
appropriateness of the Grassmannian quantizer can be sh& ! i .
pprop g onsider the complex spaé&™. Define the distance of two

analytically. it vectors to be the sine of th le bet them:
In the next step, the assumption of complete knowledge gyt vectors to be Ihe sine ot Ineé angle between them.
the source-relay and source-destination channels isaglax d(wr, W) = /1 — lwHwal2, 1)

We focus on a scheme where the destination quantizes the
source-destination channel and sends it to the relay, atiflju which is known as the chordal distance. For a codebOck
the use of the Grassmannian quantizer. Finally, a modifi¢e;, wo,--- , wy } with N distinct unit vectors as codewords,
quantizer is presented, which requires fewer number of-feedkfined(C) as the minimum distance of the codebook. For a
back bits and performs very close to the original quantizer.fixed dimensionm and codebook sizéV, the Grassmannian
The remainder of this paper is organized as follows. Sectitine packing problem [4] is that of finding a codebo@k of
Il provides a brief review of the connection between the &rassize N, i.e. N codewords, with the largest minimum distance.
mannian line packing problem and MIMO beamforming code- For the problem setup in Fig. 1, consider a beamforming
book design. Sections Ill and IV present the optimal unquacedebookC(N, §) of size N and minimum distancé. The
tized schemes and the corresponding quantization schengestination chooses the vector in this codebook that marisni
with and without the direct link. The simulation results ar¢he SNR and sends the label of this vector back to the source.
discussed in Section V. Finally, Section VI concludes theet 4 denote the resulting SNRy = maxycc P|Hw|>.
paper. The authors of [5] used the distribution of optimal source
Notations: R and C denote the real and complex spacefeamforming vector to bound the average SNR loss as:
Bold upper case and lower case letters denote matrices and 2(m—1) )
. . . . 5 5
vectors respectiveljl,, denotes the: x n identity matrix.U™  E{~y*}—E{3} < PE{0?} <1—N (—) (1——)) (2)
denotes the set of all unitary matrices @*™. |- | and 2 4
I - |l denote the absolute value of a scalar ar_wd the EUCI'd%Herem is the space dimension (number of source antennas).
norm of z}vector.|l|q- |- denotes the Frobenius norm of arpe hner bound in (2) is a decreasing functionsoffor
matrix. ()" and(-)” denote the transpose and Hermitian o}, ,,"~ 1 Therefore, to minimize the upper bound of the
a matrix. The notation® = di ag(¢, ¢z,---,¢;) € C"*"  gyp loss, we should maximize the minimum distance of the

with r :,min{,m’”}_'s used to denote a rectangular diagongl,epook, which is the same criterion used in the definition
matrix with ¢;’s on its main diagonal.CA/(0,X) represents of the Grassmannian line packing problem.

a circularly symmetric complex Gaussian distribution with
zero mean and covariance mat®. Finally, E{-} denotes

the expectation operation. I1l. MIMO AF R ELAY CHANNEL WITHOUT THE DIRECT

LINK

In this section, we consider the MIMO AF relay chan-
nel without the direct link and derive the optimal source
The connection between the Grassmannian line packibgamforming vector, relay weighting matrix, and destiati
problem and beamforming codebook design for a Rayleiglombining vectors in Section Ill.LA. Next, we present the
fading channel has been independently observed in [5] dnd [Guantization scheme for the limited feedback case in Sectio

Consider the MIMO channel in Fig. 1, whex¢éPH € C"*™ 1II.B.

II. GRASSMANNIAN LINE PACKING: A REVIEW
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A. Optimal Unquantized Scheme s

Consider the MIMO AF relay system in Fig. 2, where the (b)
direct link between source and destination is ignored. The _ _ _ ) )
source. the relay and the destination are equipped with Fig. 3. (a) Optimal unquantized scheme without the direxdt. I{(b) Quantized

! ! . . scheme without the direct link.

and! antennas respectively. The matrigg®, H;cC"*™ and
VP,H,eC™>™ model the flat fading channels of the source-
relay and relay-destination links respectively. The coiffits received SNR, and one can apply the results of [9] to show
Py and P, are referred to as the source-relay and relaynat the optimal relay matrix should match to these effectiv
destmatmn link SNR's. The source uses the V_eCHOfOF channels from left and right. In this paper, we present an
beamforming. The relay multiplies its noisy received signalternative derivation of the optimal relay matrix using neo
by the matrixWeC"*" and sends it to the destination. Thelirect convexity arguments.
destination recovers its symbol using the combining vector The relay and destination output signals in Fig. 2 are:
r. We assume power constraints at the source and the relay i i i
outputs to be equal to, without loss of generality. Tout = V/ PLPr " HoWH 8Ty, 4/ Por" Ho Wz 417 22,

The problem is to find the optimal W andr, to maximize x,.jq, = v PAWH;sz;, + Wz,
the SNR at the destination output, subject to power comdsrai
at the source and at the relay. For this problem setup,"Q€réz: ~ CN(0,I) andz ~ CN(0,1) are the complex
reasonable solution is “matching”, as described below TfRAUSSian noise vectors at the relay and the destination. The

! ) H H Tofi 12y

source should map its symbol to the dominant right singulSPUrce Power constraint is satisfied by lettiBg|v;,|"} = 1
vector of Hy; the relay should absorb maximum signal powe"ﬁlnd Is|| = 1. Also, thg _relay power congtramt, which limits
by matching to the effective chanrBl:s. scale the resulting e Power of the amplified signal and noise, can be expressed

y marening . 15 S¢ D oS E{ [%retay |2} = P1 [WH,s|? + [W]2 = 1. Finally, the
(noisy) signal to meet its power constraint and transmit §5: “uXrelay " = 1| W1 _ P Y
through the dominant right singular vector #f,. Finally, '€Ceived SNR can be written as:
the destination should match to the relay-destination bgk PP, \rHHQWHls|2
using the dominant left singular vector Hf; as the combining T= P [WHH | 5’
vector. This matching solution is depicted in Fig. 3a, in ethi 2 ” 2 r” + il

H, = A®B”, H, =F¥G”, 3)

constraint constraint on Xrejqy

Fig. 2. MIMO AF relay channel without the direct link.

where we can assumje|| = 1, without loss of generality. The
optimization problem can be summarized as:

are the singular value decompositibrfSVD) of H; andH,,
and

A=[a)|ay|---|a,] eU", F=[fi|fs|---|fi] €U,
B=[by|b2|---|b,] eU™, G=[gi|g2| --|gn] €U", We o, secm recl

@:dl ag{(bla ¢27 Y (b’r }7 ‘I’:dl ag{wla 1/127 B 1/17‘ }7
. ' . - Theorem 1:The optimal values of the source beamforming
wherer, = min{n,m}, r, = min{l,n}. Although matching yector, the destination combining vector, and the relayghvei
seems to be the natural solution to this problem, showifgy matrix for the problem in (4) are given by*=b;, r*=f;,

that the optimalW is a rank one matrix and that matchingw*—sg, a;, #, where we have used the SVD equations in (3),

) o > - ) ; er
is optimal is not trivial. This is mainly due to the NO1S€ando=(1+P1¢?) ?. Note thatW* is a rank one matrix.

amplification at the relay, which generates colored noise at Proof: The optimization is accomplished in two steps

the destination input. Stepl) Maximization with respect ¥: Fix s andr, and

The optimality of matching at the relay is shown in [9]Ulefine h,—/PH,s and ho—yBHYr. Let ¢1— ||| and
where the authors derive the optimal relay matrix with thce: Ihs||. ConsiderW=USV* as 2the SVD ofW. where
objective of rate maximization. By definiig;s andHr at 1> > '

the effecti | d relav-destinafi hanrthk U,VelU™ and ¥=di ag{o1,09, - ,0,}. The calculations
€ efiective source-relay and reiay-destination cha rovided below perform the optimization with respectlp

rate maximization is equivalent to the maximization of th and s

P1P2 |I'HH2WH15‘2
P, |[WHHEr| +1
2
ot { Isll = x| =1, Py [WHs|* + [W]2 = 1

(4)

1in all SVDs throughput this paper, the singular values ararged in Deﬁn? x = V”h; andy = U”hy, which impose the
descending order. constraintg|x|| = ||h1]| = ¢1 and|ly|| = ||hz2|]| = c2 Onx =



o]

Tecn. The problem

Finally, by combining (10) and (11), and noting that (10)

in (4) can now be rephraséads a maximization with respectis increasing in, we have the following upper bound for the

[I17I27"' ,y:[y1,y27"'7yn]
tox, y andX:
Hyx|?
max H (5)
Zyl”+1
2
o { Il=en Iyl S, ol X, 021
Liy Yi EC, g; 207 221127 1

In problem (5), the constraint oy does not depend ax and
3. Therefore, we can easily derive the optinyaln terms of

x and X3 .
1N\
€3
where the scalarc is chosen to satisfylly| = c¢2. By
substituting (6) in the objective of (5), we get:
1 -1
y=xI% (22 + —21) >x. (7)
]

For the next step, we find an upper bound for the SNR
pression in (7) and present the optimal values @nd X that

SNR:
0%65

= 1+ c1 + 02
By reconsidering the problem in (5), it is easy to check that

the following choices ofx, 3 andy satisfy the constraints
and achieve the upper bound in (12).

'70]T7 y:[Cana' : 'aO]Ta 2:d| ag {0101' o

(12)

X:[Choa" 70}7
(13)
whereo = (1 + cf) . Recalling the definitions ok, y, ¢

and cq, the optimal values in (13) can be achieved by:

1
2

V=[hy|vi|- [ve_1], U=lho|w] - [u,_1],

Y=di ag{c,0, --,0} (14)
whereh; = T hy = ey ando = (1+ |hy]|*)~=. Here
{vi,"++,Vvp_1} and{uy,--- ,u,_1} are arbitrary orthonor-

mal basis for the null-spaces of thg and hy respectively.

®0 summarize, having andr fixed, the optimal structure of

= UXVH and the corresponding SNR value are:

achieve this upper bound. Considering (7), our maximizatio

problem is equivalent to:
n 0_2
) ,
max Z || 5 —
i=1 g + =

2
Yot w0 =1

(8)

o { Ixl=ci
.”L'iEC, 0,20, t=1,2,--- ' n
2 2
Define 3; = ‘””Cg' = “‘fg‘dz. Clearly,0 < 3 < 1 and
1
>, B = 1. Now, consider the objective function in (8):
_ 2__o} _ 2 i ?
Y= Z |xl| 2j1/c = 4 1|mc%| afj:l/cg
P03
= dYhigirg < C%zi%iaffl/& ©)
_ >, oplzil? _ 2
= deemam = dowm (10)
where¢ & ¥ o

the concavity of the funct|0@— for ¢ > 0. Now, from the
second constraint of the problem (8), we have:

1->2 o} = > 0; Plail? < > o7 > |zi]* = ¢ > 7.
Therefore)", o7 >
we can bound:

(=%0

1
1+c?

2

|$1|2_1—Z 0' S % (11)

2The power constraint of the relay is computed as follows:

2
PUIWH s[>+ W2 =[|USVHhy [P+ W2 =1 Sx)+ S of =5 0|2 |>+ T of

3We have:

yH2x|

yEEx(=x)Hy
= max
I=yl?+1

Y yH (22+ =+ In>y

max
lyll=c2
Equations (6) and (7) are derived using the following restdm linear
algebra:
For any vectora and positive definite matriB, we have%
afB~1a, with equality ify = ¢cB~!a, for arbitrary nonzero scalar.

IN

and by applying the same constraint,

W:Uﬁgﬁfl
2 2
B Y P
1+ ||y + |[ho?

whereo = (1 + |hy|*)"2, hy = P Hys, andh, =
VP,HIr. This concludes the maximization with respect to
W.
Step 2) Maximization with respect soand r:
From (16) we see that is increasing both irjlh; || and ||h]||.
Therefore, for maximizing the SNR, we should maximize
|hy|| and ||hs||, subject to||s|| = ||r|] = 1. Considering the
definitions of h; and h,, the optimal value is achieved by
letting s be the dominant right singular vector Hf; andr be
the dominant left singular vector . [ |
Substituting the optimal solution, found in Theorem 1, in

(15)

(16)

2|x;]2. The inequality in (9) is a result of equation (16) reveals the optimal SNR:

« 15
Y= mv 17)
where
7 = max Pi|[Hys|* = Pi¢f,
"% = max Po|Hr|? = Pyt (18)
The optimal structure, outlined in Theorem 1, can be

achieved if the relay informs the sourcelaf (dominant right
singular vector ofH;) and the destination informs the relay

of g1 (dominant right singular vector oHs). In the next
section, we characterize the codebooks that should be used
for quantizing these optimal beamforming vectors.

B. Quantization Scheme

Fig. 3b shows the quantization scheme. We assume that
the source beamforming vectds belongs to a codebook
C, (N1, 61) shared between the source and the relay. Similarly,



Relay power

the relay beamforming vect@ belongs to a possibly different constraint
codebookCs (N2, d2), which is shared between the relay and Source power 2~CNQO,D) 2,~CN(0, )

constraint

the destination. The relay and the destination &igmdf for
receive combining respectively. All transmit/receive togs

a, b, f and g are assumed to be unit norm, amd =
(1 4 P|a'"H;b|?)~'/2 in order to satisfy the relay power

PiH & W PoHy by

constraint. The received SNR of the quantized scheme can be PyH, TITo
easily shown to be equal to: ‘
Y172 2zy~CN(0,I)
Qi wre—— (19)
T2 Fig. 4. MIMO AF relay channel with the direct link.

~12 ~ 2
wherey; = P, éHHlb‘ andy, = P, ‘fHHgg are the

received SNR's of the source-relay and relay-destinatites! time slot) to the destination. The destination has accetsdo

As v is increasing both iny; and;, we should maximize received symbolg, andy, separated in time:
these quantities to maximize This is accomplished by letting

a andf to be matched td;b and H,g, and choosingo yo=+/Porg Hosz + r{ =g,

and g based onb = argmaxwec, PI|Hiw[* andg = 4 —\/P Prf HyWH; sz + rf! (\/PQHQWzl +zQ).
arg maxwec, P2||How||?. The corresponding received SNR
values are The destination combineg, and y; to compute the output

~ y - ) symbolz,,; = agyo + a1y1. To maximize the total received
= e P Hw|", 2 = ety Py[Howl|], (20) gNR, ap and a; should be MMSE (or scaled MRC) coeffi-

. . . ___cients? which result in the total received SNR:
and the maximum received SNR of the quantized schéme

can be computed by substituting these quantities in (19): Y =" + ¥ (23)
= 7172 1) where~, and~, are the received SNR values of the direct link
149 +92 and the source-relay-destination link. Therefore, thal tBNR

In Appendix II.A, we use the distributions of the optimafS Maximized ifyo and~, are maximized. The only common
beamforming vectord; and g, for Rayleigh channels to Parameter in maximizing these two quantities is the source

compute the following upper bound for the total loss in SNR&&mforming vectos. By fixing s and following the same

caused by quantization. steps as in Section lll, the optimal values of other pararaete
can be easily derived, as shown in Fig. 5a. The corresponding
E{y*1—E{3}<2mnP (1 N (51)2(m_1) (1 51)> received SNR’s of the direct link and relay link are:
- = 1 —4vV1 |\ & -
2 2 *
70 = Pol[Hos|l?, 7 = — 12— (24)

L+m+93’

52 2(n—1) 62
2nlPy [ 1-Ny [ = 1-2) ). (22
et < ? ( 2) 2 (22) wherev, = Py|Hys|2 and~3 = Py||Hag:||> = Py2. By

combining (23) and (24) the total received SNR is:
This upper bound is decreasingdpandd. for anym > 1 and ining (23) (24) V I

n > 1. Therefore, to minimize this upper bound, we should _ Py || Hs|[*3 + Py||Hos|?
maximize the minimum distancels andd,. This proves the 14 Py||Hs|]2 + 93 OER0=l
efficiency of the Grassmannian codebooks for quantizing t'??lerefore, the optimad can be expressed as:
optimal beamforming vectors.

2
c—argmax Sl g (25)
IV. MIMO AF RELAY CHANNEL WITH THE DIRECT LINK lsli=1 [[His [ + A
In this section, the direct link is included in the systerwhere A = 1;—75 and p = %. The corresponding total
model (Fig. 4). The optimal ungquantized scheme is derivedceived SNR is: ’
in Section IV.A and the quantization scheme is presented in . EAs .
Section IV.B. Finally, in Section IV.C we introduce a modifie Ll prr + > (26)

guantized scheme, which significantly reduces the number of

feedback bits with a negligible degradation in the systehereng = o[ Hos*[|? andyi = Py |[Hs* 2.
performance. The objective function of the problem in (25) can potenyiall

have multiple local maximum points. Moreover, the global
maximum point is not unigtfe This problem does not appear

A. Optimal Unquantized Scheme to have an analytic solution and as a result we use a numerical

Consider the half-duplex MIMO relay channel in Fig. 4. At
the first time slot, the relay is silent and the destinatiareiees ~ “More exactly,ao = 24 anden = 2, wheredy = /Porf Hos, di =

. . . . 0 1
its symbol. At.t.he second time §Iot,_the source is §|Ient QWr{IHQWHls, o3 = [[ro||2, ando?=P, ||WHH§r1||2+||r1||2.
the relay amplifies and forwards its signal (received in thet fi  5if s is a global maximum point, so is’?s, for any 6 € R.



N 2~CNOD and the corresponding relay-destination received SNRyis:

\/P—1H14L‘E ‘—-JP—ZHA [ PRE2 Inax P ||Haw||2. For choosings, we need to know botiy
) . 1 @ andH;. In reality, however, such a knowledge is not available,
Tin S o and the destination and relay should somehow exchange their
PoH, c information aboutH, and H;. In this paper, we focus on
iy a system, where the destination quanti®g and sends it

20~CN(O,T) to the relay. It should be noted that, the only way that
H, contributes to the problem in (27) is through the term

® |[How||?, which can be expanded as followsHow|? =

neeNOD g 2~CN(O, D) S 12lef w2, wherev;’s ande;’s are the singular values
Q z | z and right singular vectors oH, and Ry, = rank(Hy).
WP1Hy E—-\/P_zﬂz ‘ “ n Therefore, the relay only needs to know the singular values
on e el o Xout and the right singular vectors of the direct link channehc8i
5] |% our focus in this paper is on the vector quantization feeklbac
PoHg § 7 schemes, we assume that the relay knows the singular values
‘ completely but has only access to the quantized versions of
20~CN(O.D) the singular vectors. For quantizing the singular vecttis,
(b) destination and the relay share a codeb@@kNy, dy), which

Fig. 5. (a) Optimal unquantized scheme for MIMO AF relay amelnwith IS pOSSIny different TrOmCQ (useq for determlnlngg). We
the direct link. In the first time slot, the relay and the deation match to assume that the destination quantizes each vegtora vector
H,;s* and Hos* respectively. (b) Quantized scheme for MIMO AF relayé; € C that is closest te;:”

channel with direct link. In the first time slot, the relay athe® destination

match toH ;s a}nd Hjs respectively. In the second time slot, the destination & = arg min d(w, ei)_ (29)
matches taHsg. weCo

Having v;'s and &;’s at the relay, the problem of finding the

approach to perform this optimization, which will be deped Source beamforming vectarcan be formulated as:

in Section V. Despite the fact that we do not have a closed form H.wl2 Rg
expression for the solution of problem (25), we are stilleabl  § = arg max ”17““ + ﬁz v2|efwl|?, (30)
to identify the distribution of the solution for Rayleighdiag weCi [Hyw|[2 + A i=1

channels. The main result of this section is the following s 145 - _ B . )
theorem. Where A = ~5I2, i = 32, and 9, = maxwec, P2 [Haw|*.

Theorem 2:For independent Rayleigh channel matriggs The total _received SNR can _be computed by sub_stitL_Jting (28)
andH;, the optimal source beamforming vectdrthat max- and (30) in (27). In Appendix I.B, we use the distribution of

imizes the total received SNR (or equivalently the objectiys"» 9iven in Theorem 2, to prove the following Upper bound
function in (25)) is uniformly distributed on the unit speen ©N the average loss in SNR due to quantization:

C™, wherem is the number of source antennas. 50\ 20m=1) 5
Proof: See Appendix . B E{y}-E{7} <4miP, (1—N0 (50) (1—50)>
The result in Theorem 2 is used in Appendix II.B to derive

an SNR loss upper bound, similar to (2) and (22), which 5\ 2m=D 5
justifies use of the Grassmannian codebook for quantizieg th ~ +2 (mlFo +mnP1) [ 1-Ny (5) (1—3>
optimal source beamforming vectst.

5o 2(n—1) 5o
+2nlPy | 1—Ny (—) (1——) . (31)
B. Quantization Scheme 2 2

Having identified the optimal scheme, we continue byhe upper bound in (31) is decreasingsin= 6(Cy) for any
considering the quantization scheme in Fig. 5b. The sourGg-~ 1. This justifies use of the Grassmannian codebook to
destination, source-relay, relay-destination and tatakived quantize the singular vectors By, since it has the maximum
SNR values are given by: minimum distances,. The same conclusion holds fat;

_ =12 _ =112 _ <112 and C,, since the upper bound in (31) is decreasingjin

o _POUEYOQS” o = PGS vz = P Hog] and 0, for any m,n > 1. To summarize the results, all

¥=——+%: (27)  three codebook€,, C; and C, need to be Grassmannian

1+ + S .
n _72 o ] codebooks to minimize the upper bound of the loss in the total
We need to maximize in (27) with respect to the source and

relay beamforming vectors and g, which belong to certain  6jn this case, the relay becomes responsible for determitiirgsource

codebooksC; (N1, d1) and Ca(N3,d2) as in Section 11I.B. beamforming vector. Equivalently, we could assume thatréftey quantizes

CIearIy & should be chosen to maximizg' H; and sends it to the destination, in which case the destmatiould
'8 ’ determine the source beamforming vector.

(28) "Throughput this paper, the notion of “closeness” is basetheridistance”
d

< 2
g = arg VI‘,%%)Z By |[How %, efined by the chordal distance function in (1).



received SNR. We refer to the scheme, identified by (30), o
the “properly quantized scheme”. :

In the following, we outline the steps in determining tht
beamforming vectors of the “properly quantized schemej (Fi
5b).

1) The destination uses a Grassmannian codebOgk 10°F
shared between the destination and the relay, to quant
g, the dominant right singular vector of the relay
destination channeH,. The label of the quantized
vector is sent to the relay. The relay uses this vector f
its beamforming in the second time slot. The destinatic
also sends the SNR valug to the relay. This will be
used in step 3.

2) The destination quantizes the right singular vectors
the source-destination channel using a separate Gre 10 ‘ ‘ i i i
mannian codeboolC,, which is also shared between 0 T‘f 6 8 10

) . K x-relay link SNR (P,) dB
the destination and the relay. The labels of the quantiz. .. '

vectors and the smgular valuess are sent to the relay' Fig. 6. Performance of the Grassmannian, MMSE, and randcemtizers

3) The relgy forms the objective fgnCtion in (30) anq MaXgithout the direct link. The relay-destination link SNR izedl at8dB.
imizes it over the Grassmannian codebddk, which

is shared between the source and the relay. The relay
sends the label of the maximizing vector to the sourceimulation and analytical results show that the “modifieelmgu
The source uses this vector for its beamforming in th#zed scheme” performs very close to the “properly quantize

T T
—O— MMSE quantization
—H— Random quantization, 4 vectors
—A— Random quantization, 8 vectors
—@— Grassmannian, 4 vectors

—+— Grassmannian, 8 vectors

—/— Optimal unquantized scheme

Bit error rate

10°F

N

first time slot. scheme”, as we will see in Section V.
Before concluding Section IV, we introduce a modified
scheme which performs very close to the “properly quantized V. SIMULATION RESULTS

scheme” and requires fewer number of feedback bits. . . . . .
The simulation results are divided into two subsections.

In Section V.A the direct link between the source and the
C. Modified Quantized Scheme destination is ignored (Fig. 2). In Section V.B, the simigat

Consider the problem of determining the source beamforfi@Sults are presented for the case where the direct link is
ing vector for the quantization scheme in Fig. 5b, i.e. (30present in the model (Fig. 4).

There are two links between the source and the destinatien: t 11€ general setup for the simulations is as follows. The
direct source-destination link and the source-relayidagon NPUtsymbols belong to a BPSK constellation with unit pawer
link, which we refer to as the relay link. The entries of the channel matrices are generated indepen-

If the direct link is much weaker than the relay link and caf€ntly according taCA(0,1). To model quasi-static fading

be ignored, our problem reduces to the problem in Secti&ﬂannels, the simula_tio_n time is divided 26, 000 coherence
Il and the relay does not need to know anything abotfitervals, each consisting @00 symbols. The channels are
the direct link channeH,. On the other hand, if the re|ayassumed to be constant over each coherence interval and to

link is very weak and can be ignored, the only thing thdt€ independent from one interval to the other.
relay needs to know abolH, is its dominant right singular

vector. Therefore, in both of these extreme cases we do ROt MIMO AF Relay Channel without the Direct Link
need to have any knowledge &1, other than its dominant . . .
: ) o In this section, all of the terminals are assumed to have
right singular vector. Based on this intuition, we propose a

new scheme, referred to as the “modified quantized schemt]g\em0 antennas=n=[=2). The relay-destination link SR is

. : o . . . |€<éd at P, = 8dB and the BER values have been recorded
in which the destination only quantizes the dominant ngt? . .

. . &)r different values of the source-relay link SNR.
singular vector ofH, and sends the corresponding codewor For quantization purposes, the source and the relay share a
index (and the largest singular valug) to the relay. The relay !

. . . odebookC; of size N;. Similarly, the relay and destination
then determines the source beamforming vector by formiag t . :
. share a codebook’, of size N,. Fig. 6 compares the per-
following problem.

formance of the “optimal unquantized scheme” (Fig. 3a) with
[ Hiw||? - omH. 12 the performance of the Grassmannian codebd®ksind C,

il % (32) of sizes Ni;=Ny=4 or 8. The Grassmannian codebooks are
~ adopted from [5]. The total number of the feedback bits used
where X and i have the same definitions as in (30). by the Grassmannian quantizer lisg, N1+ log, N> which

The "modified quantized scheme” requires much fewamquals4 or 6 bits for Ny=N.=4 or 8 respectively. As Fig. 6
number of feedback bits, since it only quantizes one simgulshows, we can get very close to the optimal scheme with only
vector (see step 2 for the “properly quantized scheme”). Oarfew number of bits per each coherence interval.

Smodified = W18 MAX Lo S
1



Fig. 6 also compares the performance of the Grassmann R
guantizer with other quantization schemes. For the MMS
guantization scheme, we have used two bits to quantize e
channel entry. Forn=n=I[=2, this results in2(mn+nl)=16
bits. For the random quantizer, we use a set of randon
selected vectors on the unit sphere as the quantization ca 107
words. The performance of the random scheme has be
averaged over ten such codebooks. As Fig. 6 shows, 1
Grassmannian codebooks show considerable gain as compi
to the random quantizer. However, this gain decreases as 107
codebook sizes are increased frdro 8. The main advantage - - ’

. . —O— Optimal unquantized scheme
of the random codebooks is that they are easier to generatt £ Modified unquantized scheme

compared to the Grassmannian codebooks. —5— Properly quantized scheme, 16 vectors
—@— Modified quantized scheme, 16 vectors

1000 —<— Properly quantized scheme, 8 vectors
—A— MMSE quantization
T T

Bit error rate

B. MIMO AF Relay Channel with the Direct Link :
-10 -8 -6 -4 -2 0 2

In this section, all the stations are assumed to have thi Direct link SNR (P) dB
antennas r¢=n=I[=3). Fig. 7 shows the BER values for
guantized and unquantized schemes as a function of dirE6t t7-|_ kp‘?rrLOfmance of lthe qudantilzeddan? U?qualf_“i.zdfégs Sd‘m]{?fh éhet
link SNR Py, when the source-relay and relay—destinatio(ﬁiei Po odp, oo ey and felay-desiination TS e Tked &
link SNR’s are fixed atP, = P, = 2dB. For the optimal
scheme, we use the gradient descent method for determining
the source beamforming vector from (25). The constrai °
Is]|=1 is eliminated by the change of variabie- ..

The “modified unquantized scheme” in Fig. 7 has th
same structure as the “optimal unquantized scheme” with t
difference that the relay only considers the dominant dargu
value and singular vector dfly in formulating the problem
of determining the source beamforming vector. This proble
is exactly the same as the problem (25), used by the optin
scheme, except thdfH,s||? is replaced by ?|el’s|?, where
v; ande; are the dominant singular value and right singule
vector of Hy. We can analytically show that the average SNI
loss of the “modified unquantized scheme” compared wi

the “optimal unquantized scheme” is at mastlog,,(1 +

Bit error rate

—&— Optimal unquantized scheme
10 “H —H— Properly quantized scheme, 16 vectors

E{v3}/E{v?}), wherev, is the second largest singular value —— Properly quantized scheme, 8 vectors
] H H —@— Modified quantized scheme, 16 vectors
of. H,. Form=I[=3, this bound is ggual t@.24dB. Although A MMSE quantization
this bound guarantees that modified scheme would perfo o o o e T, s
well, it is not necessarily tight, as the simulation resiitgig. Tx-relay link SNR (P,) dB

7 show that the actual SNR loss is very small. The “modifieu

unquantized scheme” is the basis for the “modified quantize} g performance of the quantized and unquantized schaiitiethe direct
scheme” in Section IV.C. link. The direct link and relay-destination link SNR are fixat Py = —4dB

The “properly quantized scheme”, as discussed in Sectigif /2 = 2dB.

IV.B, consists of three codebooky,, C; andC, of sizesNy,

N; and N,. Fig. 7 shows the performance of the “properly

guantized scheme” with Grassmannian codebooks of sizesb
No=N,=N,=8 or 16, adopted from [17]. Table | compares these values fdf=Ny=N;=N,=8, 16,

The figure also shows the performance of the Grassmann%ﬁ"_l_?” and full rank channel matritl,. Fig. 7 also
codebooks with “modified quantized scheme” (see SectighoWs the_ performance of th_e MMSE qu_a_nnzer. This quan-
IV.C). This scheme shows a negligible performance deg _er_requwesz(mn+ml+ln).b.|ts ~for quantizing the channel
dation with respect to the “properly quantized scheme”, plpatrices and bits for quantizing,.
requires fewer number of feedback bits. Following the three Fig. 8 compares the performance of the same schemes of
steps for the “properly quantized scheme” in Section IV.Bsig. 7 in a different scenario. For this figure, the direcklin
one can easily check that we need a total(bf+ Rp)b + and relay-destination link SNR’s are fixed B = —4dB and
1og2(N§°N1N2) feedback bits for the “properly quantizedP, = 2dB. The BER values have been recorded for different
scheme” and2b + log,(NoN1N2) bits for the “modified values of the source-relay link SNR;. Once again, we see
guantized scheme”. Heteis the number of bits that a (hypo-that the performance of the “modified quantized scheme” is
thetical) scalar quantizer uses for quantizing a scalameval very close to the “properly quantized scheme”.



TABLE |
COMPARISON OF THENUMBER OF THE FEEDBACK BITS FORDIFFERENT
QUANTIZATION SCHEMESSm =n =1 =3;
No = N; = N2 =N =8,16.

3o and X, the matrixQV, has the same distribution a4,
and similarly QV; has the same distribution 8€;. Since
the source-destination and source-relay channels arenassu
to be independenty, and V; are also independent, and

Scheme Number of feedback bitd therefore the joint distribution ofVy, V1) is also the same
N=8 | N=I6 as the joint distribution ofQV,, QV1). Hence, any arbitrary
l\ljlrodpfe_rlél quant_izeg 15+tb 20+4Z function of these pairs will have the same distribution. By
odified quantize 9+2 1242 : : ; .
VIVISE 5TTD applying this to the function(; . (-), we conclude that

s* = <>:0,>:1 (Vo,Vl) and QS* = Czo,zl (QVOaQVI) have
the same distribution. Since this is true for any unitarynmrat
Q, we conclude that* is uniformly distributed on the complex
VI. CONCLUSION unit sphere, conditioned oB, and X;.

In this paper, we derived the optimal source and relay Note that if the conditional distribution of* is uniform,
beamforming vectors to maximize the total received SN unconditional distribution is also uniform. Moreovéne
of MIMO AF relay channel both with and without the di-random vectos* is independent of the random matricEs
rect link. For the limited feedback scenario, we proposed&ﬁld 34, since its conditional and unconditional distributions
quantization scheme based on the Grassmannian codebddRsthe same.
and analytically proved its efficiency. A modified quantized
scheme was also presented, which performs very close to the APPENDIXII
original quantization scheme and requires consideraligife PROOF OFSNR LOSSUPPERBOUNDS
number of feedback bits. Finally, the analytical resultseve |n this appendix, we prove the SNR loss upper bounds of
verified by comparing the performances of the unquantizegb) and (31) using the following lemmas. The proofs of these

and quantized schemes under different scenarios. lemmas will not be given for the sake of brevity.
Lemma 1:For nonnegative variables,, x5, y; andys, we
APPENDIX I have:
THE DISTRIBUTION OF THEOPTIMAL BEAMFORMING T Toyo
* - — < |z1 — 22| + — Ya|-
VECTORS [ 1+x2+y2‘_| 1 — 2| + y1 — y2|

In this appendix, we show that there exists a solusdbn  Lemma 2:For the matrixH € CP*? with independent
to the problem (25) that is uniformly distributed on the uni€A (0, 1) entries, we haveE {}", 02} = pq, whereo;'s are
sphere inC™, wherem is the number of source antennas. Ththe singular values oH.
problem (25) is repeated here: Lemma 3:For any unit vectorss, v, andw, we have:

[ Hys||®

s* = arg max ———+—— + u||Hos||?, (1.1)

Isli=1 [His||? + A ““HV\Q - !VHW\Q‘ < 2d(u, w),
s||=1 1S

) " " where the distance functiod(-, -) is defined in (1).
ConsiderH, = UyX%, V' andH; = U1§1V1 as the SVD Lemma 4:Consider the codebod® = {w1, wa, -, wn}
of Hy gnd H,. Clearly, |Hos| = HZ_JOVO | and [His|| =  and the matrisE with o;s as its singular values. For any unit
|21 V{'s||, sinceU, and Ul* are unitary matrices. = vectors, defines_, € C as the closest vector in codebo6k
It is easy 10 check thas” = Vin(3o, X1, Vi Vo) Is @ oy letd,, (s) “ d(s,s.), whered(-,") is the distance
solution to (1.1), where the function(-, -, -) is defined to be function defined in (1). Then, we have:
a solution to the following problem: ' ’ '

(S0, B1, VIIvy) < ||| Hs[|* — |[Hsg |]?| < 2 (Z 0?) d(s),

2 3
max [Z:1 VIVt St (l2)  Lemma 5:Consider the codebodk(N, o) and the function
l[el=1 HzlvaotHQ 4 A U d.(-) defined in Lemma 4. For the random vectoe C™

uniformly distributed on the unit sphere, we have:
If we fix 3o and X, the solutions*, identified above, can be y P

expressed as a function &, and V: E{d.(s)} <1 N (§>2(m1) <1 - §>
[e} = 2 :

* de 2
S = Cz:o,):l (V07 Vl) :f V077(207 211 V{{VO) (|3)
Now, for any unitary matrixQ, we have the following from A. Proof of the Upper Bound in (22)
(1.3): The optimal unquantized scheme SNR and the quantized
X scheme SNR are given in (17) and (21), which are repeated

Coum (QV0,QV1) = QG 5. (Vo, Vi) = Qs schel 9 (17) and (21) P

. K A K > A
For a Rayleigh channel matrid,, we know that the matrix = %, A= %, (1.1)
V, is independent o0&, and its distribution does not change T+ +7 I+ +7
by pre-multiplication by a unitary matri). The same argu- where~;, +3, 41 and4, are defined in (18) and (20). Clearly
ment holds forH;, V; and ¥,. Therefore, conditioned on~} > 4; and~3 > 42, and thereforep* > 4. Our goal is
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to bound~* — 4. For this purpose, we need the followingHere v;'s are the singular values oH, and &; =
definitions: argminwecc, d(w, €;), wheree;'s are the right singular values
of H,.

Our goal is to bound the SNR losg — 4. For this purpose,
we need to define:

s def ne  def e def MY
1= Pi[Hb' |7, 5 = Pof|Haeg'|I5, v —1+7{+,}/§7
whereb’ is the closest vector in the codebo@k to by, andg’ , L
is the closest vector in the codebo@% to g;. By considering s' = arg wed, v(w.8), 7 =1(s,8). (I1.9)
the definitions ofy; and4s in (20) and the fact thab’ € C; .
andg € Cs, it is clear thaty; > 4 andd, > ~4, and Ve can write:
therefore;y > +/. Hence, we can write:

Y= =-)+ 0 -9). (11.10)
* A% ! A7
T =A<y == 71*72 — — 71/72 y Based on the definitions given above, each of these terms can
( )1 trt+n ldntrn be bounded as follows.
a H * .
<( -+ 0i—90), (2 _Step 1) Bounding” — 1"
Define:
where (a) follows from Lemma 1. The terms on the right side def AU
of (I1.2) can be bounded as follows. V' 2 4,

L+ +%
R R O R CO RV A - R ([ EY
* / 2 /12 ®) 2

Y —y=Pu ([Hiby [|*—[H:b'|*) < 2P <Z ¢%‘> ds, (b1), wheres” C, is the closest vector in the codebo@k to
i s*, andg” € C, is the closest vector in the codebo@k to

where (b) follows from Lemma 4, ang’s are singular values g;. Noting the definitions of ands/, it is clear thaty’ > +”

of H;. The termys—~/} can be similarly bounded. Combiningand we can write:

these bounds with (I.2), we get the following upper bound:

Noting the definitions ofyy, v1, we have:

i

* Kk
7*_7/ < ’7*—’7”§ ‘ - '713/2 *_1 Y172
*_ A <9 (Z¢) (b1) + 2P <Zw> ), g
Y=y <2 1) 2 c, (81 @
7 ’ s =1+ I =+ 16—l
(1.3)
where;’s are singular values dfl,. Noting that the singular (b) 9 . 2 .
vectorsb; andg; are uniformly distributed on the unit spheres =P H‘HZng — [ Hag"]| |+P1 H‘Hls (7= [Hs™]| }

+ 7% 7|

N

(of the corresponding dimensions) and are independenteof th +Po || Hos* || —||Hos"||?|

singular values, we can apply Lemma 2 and 5 to (11.3) to

achieve the upper bound in (22). <2P2 (Zw ) (g1)+2P (Z(b ) s¥)

B. Proof of the Upper Bound in (31) +2P, <Z Vf) dg. (s*),
Define: J

def  m(s1)72(s2) (11.12)

V(s1,82) = L+ mi(s1) + 72(s2)

+0(s1), (-4 Where we have used Lemma 1 for (a). In (§);}7, and

def {7}2_, have been replaced by their definitions. Flnally, (©)
wherey;(s) = P;||H;s||?, fori = 0, 1, 2. With this definition, results from Lemma 4.
the SNR of the optimal unquantized schenteand the SNR  Step 2) Bounding’ — 3:

of the “properly quantized schemé’can be expressed as: For this step, we will need the following lemma.

Vi Lemma 6:For any unit vectos, we have:

V=78 81) = ﬁ‘i"%v (1.5) } } )

o Qb v(s.8) — x(s.8)| < 2P Y _ vid,, (e:).

Y =7(5,8) (11.6) _ g

] ) ) ) Proof: Noting the definition ofy(-, ) in (11.4),
In (11.5), g1 is the dominant right singular vector &5, and
s** is defined in (25). f\lsovg = (s*), 77 = n(s*), :_:md (s, 8) = 71(s)72 +P Z 2|t s|
¥ = v2(g1). In (11.6), § = argmaxwec, 72(w), as defined L+m(s )+’Y2
in (28), ands, defined in (30), can be expressed as:

Therefore,
§=arg max x(w,8), (1.7)
weCy

Nz (yefsf - \éfsf)

%

def  71(s1)y2(s2) o \aH . |2 @) o
S1,82) = +B “le sy . (1.8 <2P, 2d(e;, &;),
X( 1 2) 1—}—’}/1(51)_’_72(52) OZV } 1} ( ) OZV ( )

|’7(S, g) - X(Svg)|: PO

where

%
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where in (a), we have used Lemma 3. Noting the definition @if5S] B. Khoshnevis, W. Yu, and R. Adve, “Grassmannian beamfog

&;'s, we haved(ei,él-) — dc (ei) and the proof is complete. for'MIMO amplify-and-forward_ relaying”,Conference on Information
0 Sciences and Systems (ClSSjinceton, NJ, U.S.A., Mar. 2008.
u [16] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobileultiple-
Letd =2P, ), l/Z-QdCD (e;), then we have: antenna communication link in Rayleigh flat fadinEEE Trans.
Inform. Theory vol. 45, no. 1, pp. 139-157, Jan. 1999.

, ;. (@) ;. o e _ _ [17] D. J. Love. Grassmannian Subspace Packing. [Onlineildbie:

v =~(s",8) < x(s',8)+ 0 < x(8,8) +0<~(8,8) + 260 http://cobweb.ecn.purdue.edudjlove/grass.htm

=5 + 26, (11.13)

where in (a) and (c) we have used Lemma 6, and (b) results
from (11.7) and the fact that’ € C;. By combining (I1.10),
(11.22) and (11.13) we get the following upper bound:
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V= F < AR vidg () + 2P | > 7 | do, (g1)

12 (P (> ¢ |+ P (D v? | | de, (s7). (11.14)

From Appendix I,s* is uniformly distributed on the unite
sphere and is independent of the singular valggs and
v;'s. The same argument holds for the singular vecigrs
ande;’s and the corresponding singular valugss andv;’s.
By considering these facts and taking the expectation df bot
sides of (I11.14) and using Lemma 2 and 5, we get the upper
bound in (31).
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