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Grassmannian Beamforming for MIMO
Amplify-and-Forward Relaying
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Abstract— We consider the problem of beamforming codebook
design for limited feedback half-duplex multiple-input multiple-
output (MIMO) amplify-and-forward (AF) relay system. In th e
first part of the paper, the direct link between the source
and the destination is ignored. Assuming perfect channel state
information (CSI), we show that the source and the relay should
map their signals to the dominant right singular vectors of
the source-relay and relay-destination channels. For the limited
feedback scenario, we prove the appropriateness of Grassman-
nian codebooks as the source and relay beamforming codebooks
based on the distributions of the optimal source and relay
beamforming vectors. In the second part of the paper, the
direct link is considered in the problem model. Assuming perfect
CSI, we derive the optimization problem that identifies the
optimal source beamforming vector and show that the solution
to this problem is uniformly distributed on the unit sphere for
independent and identically distributed (i.i.d) Rayleigh channels.
For the limited feedback scenario, we justify the appropriateness
of Grassmannian codebooks for quantizing the optimal source
beamforming vector based on its distribution. Finally, a modified
quantization scheme is presented, which introduces a negligible
penalty in the system performance but significantly reducesthe
required number of feedback bits.

Index Terms— Amplify-and-forward relaying, Beamforming,
Grassmannian codebooks, Multiple-input multiple-output sys-
tems.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) technology pro-
vides a wireless system with a large number of degrees of
freedom, which can be used for increasing the capacity and/or
reliability of wireless channels. Relaying techniques, onthe
other hand, can extend the communication range and coverage
by supporting shadowed users with the help of relay nodes
and reduce the transmission power required to reach the users
far from the base station. These benefits make MIMO relaying
techniques a powerful candidate for implementation in the next
generation wireless networks.

Considering a system with a single data stream and perfect
channel knowledge at the destination, several methods can be
used to achieve the potential benefits of the MIMO channel.
Maximum ratio transmission and combining (MRT-MRC)
technique [1] can achieve full diversity order while providing
considerable array gain compared to space-time codes [2].
This gain is achieved at the expense of obtaining channel
knowledge at the source, therefore, the destination needs to
send the quantized channel information back to the source.
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While a general purpose minimum mean-square error (MMSE)
quantizer can be used to quantize each channel matrix entry,
doing so requires a large number of feedback bits and it
does not preserve the structure of the optimal beamforming
vector [3]. A more efficient approach is to share a codebook
of beamforming vectors between the source and destination,
and send back the label of the best beamforming vector to
the source. For the case of flat Rayleigh fading channel, the
codebook design problem has been shown to be related to the
Grassmannian line packing problem [4, 5, 6].

In this paper, we generalize the idea of MRT-MRC to the
MIMO relay channel with an amplify-and-forward (AF) relay
station. A general information theoretic analysis of the MIMO
relay channel has been presented in [7] and [8]. Although
efficient signaling through the relay channel may require a
full-duplex relay with specific processing capabilities (e.g.
encoding/decoding), AF relays are still attractive due to their
lower implementation complexity. Moreover, the full-duplex
assumption cannot be realized by current technology, as the
input and output signals need to be separated in time or
frequency at the relay. For these reasons, this paper focuses
on the half-duplex AF relay system.

The half-duplex MIMO AF relay channel has been consid-
ered in [9] and [10], where the authors present different solu-
tions for maximizing the instantaneous capacity with respect
to the weighting matrix at the relay. These papers assume no
channel state information at the source (CSIT) and consider
uniform power allocation over the source antennas. The work
[11] assumes perfect CSIT and derives the optimal power
allocation scheme for the source and relay by neglecting the
direct link. Finally, the authors of [12] and [13] study the same
problem including the direct link.

Our problem setup is different from these papers in two
major aspects: 1) The objective of the aforementioned ref-
erences is the maximization of the instantaneous capac-
ity; our problem, however, can be categorized as a single-
dimensional beamforming problem, where we optimize the
source beamforming vector, destination combining vector,and
relay weighting matrix to maximize the received signal-to-
noise ratio. 2) These papers assume either no CSI or complete
CSI. Our work, however, focuses on a “limited feedback”
scenario, where the receiver end of a link sends the properly
quantized channel state information back to the transmitter
side.

It should be noted that we assume perfect channel state
information at the receiver sides of the links (CSIR), i.e. the
relay knows source-relay channel, and the destination knows
source-destination and relay-destination channels. Although
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the source-relay channel information can be made availableto
the destination, e.g. by forwarding the corresponding training
sequence to destination [14], we do not assume such knowl-
edge in this paper. An extension of the current work with this
additional CSI assumption is presented in [15].

The structure of this paper is as follows. The analysis starts
by first ignoring the direct link and deriving the corresponding
optimal source and relay beamforming vectors. Based on the
distributions of these vectors for Rayleigh fading channels, we
justify use of Grassmannian codebooks in the corresponding
quantization scheme.

In the second part of the paper, we include the direct link
in the system model. As expected, one needs to know both
source-relay and source-destination channels to determine the
optimal source beamforming vector. We assume that such
knowledge is available (for example at the relay). We then
derive the optimization problem that characterizes the optimal
source beamforming vector. Although this problem does not
appear to have an analytic solution, we are able to show that
for i.i.d. Rayleigh channels the solution to this problem is
uniformly distributed on the unit sphere, based on which, the
appropriateness of the Grassmannian quantizer can be shown
analytically.

In the next step, the assumption of complete knowledge of
the source-relay and source-destination channels is relaxed.
We focus on a scheme where the destination quantizes the
source-destination channel and sends it to the relay, and justify
the use of the Grassmannian quantizer. Finally, a modified
quantizer is presented, which requires fewer number of feed-
back bits and performs very close to the original quantizer.

The remainder of this paper is organized as follows. Section
II provides a brief review of the connection between the Grass-
mannian line packing problem and MIMO beamforming code-
book design. Sections III and IV present the optimal unquan-
tized schemes and the corresponding quantization schemes,
with and without the direct link. The simulation results are
discussed in Section V. Finally, Section VI concludes the
paper.

Notations:R and C denote the real and complex spaces.
Bold upper case and lower case letters denote matrices and
vectors respectively.In denotes then×n identity matrix.Um

denotes the set of all unitary matrices inCm×m. | · | and
‖ · ‖ denote the absolute value of a scalar and the Euclidean
norm of a vector.‖ · ‖

F
denotes the Frobenius norm of a

matrix. (·)T and (·)H denote the transpose and Hermitian of
a matrix. The notationΦ = diag(φ1, φ2, · · · , φr) ∈ Cm×n

with r = min{m,n} is used to denote a rectangular diagonal
matrix with φi’s on its main diagonal.CN (0,Σ) represents
a circularly symmetric complex Gaussian distribution with
zero mean and covariance matrixΣ. Finally, E{·} denotes
the expectation operation.

II. GRASSMANNIAN L INE PACKING : A REVIEW

The connection between the Grassmannian line packing
problem and beamforming codebook design for a Rayleigh
fading channel has been independently observed in [5] and [6].
Consider the MIMO channel in Fig. 1, where

√
PH ∈ Cn×m

Fig. 1. Beamforming over MIMO channel.

models the flat fading channel matrix,z ∼ CN (0, In) is
the destination input noise vector, andm, n are the number
of antennas at source and destination respectively. It can be
shown that the source beamforming vector which maximizes
the received SNR is the dominant right singular vector of
H, i.e. the right singular vector corresponding to the largest
singular value ofH. The resulting (maximized) SNR is equal
to γ⋆ = Pσ

2
1 , whereσ1 is the largest singular value ofH. For

the Rayleigh fading channel matrixH, the singular vectors
have been shown to be uniformly distributed on the unit sphere
in Cm (see [5], [16]). Based on this fact, the authors of
[5] showed that the beamforming codebook can be designed
according to the criterion of the Grassmannian line packing
problem, which is described below.

Consider the complex spaceCm. Define the distance of two
unit vectors to be the sine of the angle between them:

d(w1,w2) =

√

1 − |wH
1 w2|2, (1)

which is known as the chordal distance. For a codebookC =

{w1,w2, · · · ,wN} with N distinct unit vectors as codewords,
defineδ(C) as the minimum distance of the codebook. For a
fixed dimensionm and codebook sizeN , the Grassmannian
line packing problem [4] is that of finding a codebookC of
sizeN , i.e.N codewords, with the largest minimum distance.

For the problem setup in Fig. 1, consider a beamforming
codebookC(N, δ) of sizeN and minimum distanceδ. The
destination chooses the vector in this codebook that maximizes
the SNR and sends the label of this vector back to the source.
Let γ̃ denote the resulting SNR:̃γ = maxw∈C P‖Hw‖2.
The authors of [5] used the distribution of optimal source
beamforming vector to bound the average SNR loss as:

E{γ⋆}−E{γ̃} ≤ PE{σ2
1}
(

1−N
(

δ

2

)2(m−1)(

1−δ
2

4

)

)

(2)

wherem is the space dimension (number of source antennas).
The upper bound in (2) is a decreasing function ofδ, for
any m > 1. Therefore, to minimize the upper bound of the
SNR loss, we should maximize the minimum distance of the
codebook, which is the same criterion used in the definition
of the Grassmannian line packing problem.

III. MIMO AF R ELAY CHANNEL WITHOUT THE DIRECT

L INK

In this section, we consider the MIMO AF relay chan-
nel without the direct link and derive the optimal source
beamforming vector, relay weighting matrix, and destination
combining vectors in Section III.A. Next, we present the
quantization scheme for the limited feedback case in Section
III.B.
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S o u r c e p o w e rc o n s t r a i n t R e l a y p o w e rc o n s t r a i n t o n
Fig. 2. MIMO AF relay channel without the direct link.

A. Optimal Unquantized Scheme

Consider the MIMO AF relay system in Fig. 2, where the
direct link between source and destination is ignored. The
source, the relay, and the destination are equipped withm, n
andl antennas respectively. The matrices

√
P1H1∈Cn×m and√

P2H2∈Cl×n model the flat fading channels of the source-
relay and relay-destination links respectively. The coefficients
P1 and P2 are referred to as the source-relay and relay-
destination link SNR’s. The source uses the vectors for
beamforming. The relay multiplies its noisy received signal
by the matrixW∈Cn×n and sends it to the destination. The
destination recovers its symbol using the combining vector
r. We assume power constraints at the source and the relay
outputs to be equal to1, without loss of generality.

The problem is to find the optimals, W andr, to maximize
the SNR at the destination output, subject to power constraints
at the source and at the relay. For this problem setup, a
reasonable solution is “matching”, as described below. The
source should map its symbol to the dominant right singular
vector ofH1; the relay should absorb maximum signal power
by matching to the effective channelH1s, scale the resulting
(noisy) signal to meet its power constraint and transmit it
through the dominant right singular vector ofH2. Finally,
the destination should match to the relay-destination linkby
using the dominant left singular vector ofH2 as the combining
vector. This matching solution is depicted in Fig. 3a, in which

H1 = AΦB
H
, H2 = FΨG

H
, (3)

are the singular value decompositions1 (SVD) of H1 andH2,
and

A=[a1|a2| · · · |an] ∈ Un
, F=[f1|f2| · · · |fl] ∈ U l

,

B=[b1|b2| · · · |bm] ∈ Um
, G=[g1|g2| · · · |gn] ∈ Un

,

Φ=diag{φ1, φ2, · · ·, φr1
}, Ψ=diag{ψ1, ψ2, · · ·, ψr2

},
wherer1 = min{n,m}, r2 = min{l, n}. Although matching
seems to be the natural solution to this problem, showing
that the optimalW is a rank one matrix and that matching
is optimal is not trivial. This is mainly due to the noise
amplification at the relay, which generates colored noise at
the destination input.

The optimality of matching at the relay is shown in [9],
where the authors derive the optimal relay matrix with the
objective of rate maximization. By definingH1s andH

H
2 r at

the effective source-relay and relay-destination channels, the
rate maximization is equivalent to the maximization of the

1In all SVDs throughput this paper, the singular values are arranged in
descending order.

� � � � ��R e l a y
(a)R e l a y
(b)

Fig. 3. (a) Optimal unquantized scheme without the direct link. (b) Quantized
scheme without the direct link.

received SNR, and one can apply the results of [9] to show
that the optimal relay matrix should match to these effective
channels from left and right. In this paper, we present an
alternative derivation of the optimal relay matrix using more
direct convexity arguments.

The relay and destination output signals in Fig. 2 are:

xout =
√

P1P2r
H
H2WH1sxin +

√

P2r
H
H2Wz1 + r

H
z2,

xrelay =
√

P1WH1sxin + Wz1,

where z1 ∼ CN (0, I) and z2 ∼ CN (0, I) are the complex
Gaussian noise vectors at the relay and the destination. The
source power constraint is satisfied by lettingE{|xin|2} = 1

and ‖s‖ = 1. Also, the relay power constraint, which limits
the power of the amplified signal and noise, can be expressed
as:E{‖xrelay‖2} = P1 ‖WH1s‖2

+ ‖W‖2
F

= 1. Finally, the
received SNR can be written as:

γ =
P1P2

∣

∣r
H
H2WH1s

∣

∣

2

P2

∥

∥WHHH
2 r
∥

∥

2
+ ‖r‖2

,

where we can assume‖r‖ = 1, without loss of generality. The
optimization problem can be summarized as:

max
P1P2

∣

∣r
H
H2WH1s

∣

∣

2

P2

∥

∥WHHH
2 r
∥

∥

2
+ 1

(4)

s.t.

{

‖s‖ = ‖r‖ = 1, P1 ‖WH1s‖2
+ ‖W‖2

F
= 1

W ∈ Cn×n
, s ∈ Cm

, r ∈ Cl
.

Theorem 1:The optimal values of the source beamforming
vector, the destination combining vector, and the relay weight-
ing matrix for the problem in (4) are given by:s

⋆=b1, r⋆=f1,
W

⋆=σg1a1
H , where we have used the SVD equations in (3),

andσ=
(

1+P1φ
2
1

)− 1
2 . Note thatW⋆ is a rank one matrix.

Proof: The optimization is accomplished in two steps.
Step1) Maximization with respect toW: Fix s and r, and

define h1=
√
P1H1s and h2=

√
P2H

H
2 r. Let c1= ‖h1‖ and

c2= ‖h2‖. ConsiderW=UΣV
H as the SVD ofW, where

U,V∈Un and Σ=diag{σ1, σ2, · · · , σn}. The calculations
provided below perform the optimization with respect toU,
V andΣ.

Define x = V
H

h1 and y = U
H

h2, which impose the
constraints‖x‖ = ‖h1‖ = c1 and‖y‖ = ‖h2‖ = c2 on x =
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[x1, x2, · · · , xn]
T
,y = [y1, y2, · · · , yn]

T ∈ Cn. The problem
in (4) can now be rephrased2 as a maximization with respect
to x, y andΣ:

max

∣

∣y
H

Σx
∣

∣

2

‖Σy‖2
+ 1

(5)

s.t.

{

‖x‖=c1, ‖y‖=c2,
∑n

i=1 σ
2
i |xi|2+

∑n
i=1 σ

2
i =1

xi, yi ∈ C, σi ≥ 0, i=1, 2, · · · , n
In problem (5), the constraint ony does not depend onx and
Σ. Therefore, we can easily derive the optimaly in terms of
x andΣ:3

y = c

(

Σ
2 +

1

c22

I

)−1

Σx, (6)

where the scalarc is chosen to satisfy‖y‖ = c2. By
substituting (6) in the objective of (5), we get:

γ = x
H
Σ

(

Σ
2 +

1

c22

I

)−1

Σx. (7)

For the next step, we find an upper bound for the SNR ex-
pression in (7) and present the optimal values ofx andΣ that
achieve this upper bound. Considering (7), our maximization
problem is equivalent to:

max

n
∑

i=1

|xi|2
σ

2
i

σ2
i + 1

c2
2

(8)

s.t.

{

‖x‖ = c1,
∑n

i=1 σ
2
i |xi|2 +

∑n
i=1 σ

2
i = 1

xi ∈ C, σi ≥ 0, i = 1, 2, · · · , n

Define βi =
|xi|

2

c2
1

=
|xi|

2

‖x‖2 . Clearly, 0 ≤ βi ≤ 1 and
∑n

i=1 βi = 1. Now, consider the objective function in (8):

γ =
∑

i |xi|2 σ2
i

σ2
i
+1/c2

2

= c
2
1

∑

i
|xi|

2

c2
1

σ2
i

σ2
i
+1/c2

2

= c
2
1

∑

i βi
σ2

i

σ2
i
+1/c2

2

≤ c
2
1

P

i
βiσ

2
i

P

i
βiσ2

i
+1/c2

2

(9)

= c
2
1

P

i
σ2

i |xi|
2

P

i σ2
i
|xi|2+c2

1
/c2

2

= c
2
1

ζ
ζ+c2

1
/c2

2

, (10)

whereζ
def
=
∑

i σ
2
i |xi|2. The inequality in (9) is a result of

the concavity of the function t
t+1/c2

2

for t ≥ 0. Now, from the
second constraint of the problem (8), we have:

1−∑i σ
2
i =

∑

i σ
2
i |xi|2 ≤∑i σ

2
i

∑

i |xi|2 = c
2
1

∑

i σ
2
i .

Therefore,
∑

i σ
2
i ≥ 1

1+c2
1

and by applying the same constraint,
we can boundζ:

ζ =
∑

i σ
2
i |xi|2 = 1 −∑i σ

2
i ≤ c2

1

1+c2
1

. (11)

2The power constraint of the relay is computed as follows:

P1‖WH1s‖2+‖W‖2

F
=‖UΣV

H
h1‖

2
+‖W‖2

F
=‖Σx‖2+

P

σ2
i
=

P

σ2
i |xi|

2+
P

σ2
i

.

3We have:

max
‖y‖=c2

|y
HΣx|

2

‖Σy‖2+1
= max

y

yHΣx(Σx)Hy

yH

„

Σ2+ 1

c2
2

In

«

y

.

Equations (6) and (7) are derived using the following resultfrom linear
algebra:

For any vectora and positive definite matrixB, we have yHaaHy

yHBy
≤

aHB−1a, with equality ify = cB−1a, for arbitrary nonzero scalarc.

Finally, by combining (10) and (11), and noting that (10)
is increasing inζ, we have the following upper bound for the
SNR:

γ ≤ c
2
1c

2
2

1 + c21 + c22

. (12)

By reconsidering the problem in (5), it is easy to check that
the following choices ofx, Σ and y satisfy the constraints
and achieve the upper bound in (12).

x=[c1,0,· · ·,0]
T
, y=[c2,0,· · ·,0]

T
, Σ=diag {σ,0,· · ·, 0} ,

(13)
whereσ =

(

1 + c
2
1

)− 1
2 . Recalling the definitions ofx, y, c1

andc2, the optimal values in (13) can be achieved by:

V=[ĥ1|v1| · · · |vn−1], U=[ĥ2|u1| · · · |un−1],

Σ=diag{σ,0,· · ·, 0} (14)

whereĥ1 = h1

‖h1‖
, ĥ2 = h2

‖h2‖
andσ = (1 + ‖h1‖2

)−
1
2 . Here

{v1, · · · ,vn−1} and {u1, · · · ,un−1} are arbitrary orthonor-
mal basis for the null-spaces of theh1 and h2 respectively.
To summarize, havings andr fixed, the optimal structure of
W = UΣV

H and the corresponding SNR value are:

W=σĥ2ĥ
H
1 (15)

γ =
‖h1‖2‖h2‖2

1 + ‖h1‖2
+ ‖h2‖2 , (16)

where σ = (1 + ‖h1‖2
)−

1
2 , h1 =

√
P1H1s, and h2 =√

P2H
H
2 r. This concludes the maximization with respect to

W.
Step 2) Maximization with respect tos and r:

From (16) we see thatγ is increasing both in‖h1‖ and‖h2‖.
Therefore, for maximizing the SNR, we should maximize
‖h1‖ and ‖h2‖, subject to‖s‖ = ‖r‖ = 1. Considering the
definitions of h1 and h2, the optimal value is achieved by
letting s be the dominant right singular vector ofH1 andr be
the dominant left singular vector ofH2.

Substituting the optimal solution, found in Theorem 1, in
equation (16) reveals the optimal SNR:

γ
⋆ =

γ
⋆
1γ

⋆
2

1 + γ⋆
1 + γ⋆

2

, (17)

where

γ
⋆
1 = max

‖s‖=1
P1‖H1s‖2 = P1φ

2
1,

γ
⋆
2 = max

‖r‖=1
P2‖HH

2 r‖2 = P2ψ
2
1 . (18)

The optimal structure, outlined in Theorem I, can be
achieved if the relay informs the source ofb1 (dominant right
singular vector ofH1) and the destination informs the relay
of g1 (dominant right singular vector ofH2). In the next
section, we characterize the codebooks that should be used
for quantizing these optimal beamforming vectors.

B. Quantization Scheme

Fig. 3b shows the quantization scheme. We assume that
the source beamforming vector̃b belongs to a codebook
C1(N1, δ1) shared between the source and the relay. Similarly,
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the relay beamforming vector̃g belongs to a possibly different
codebookC2(N2, δ2), which is shared between the relay and
the destination. The relay and the destination useã and f̃ for
receive combining respectively. All transmit/receive vectors
ã, b̃, f̃ and g̃ are assumed to be unit norm, andσ =

(1 + P1|ãH
H1b̃|2)−1/2 in order to satisfy the relay power

constraint. The received SNR of the quantized scheme can be
easily shown to be equal to:

γ =
γ1γ2

1 + γ1 + γ2
, (19)

where γ1 = P1

∣

∣

∣
ã

H
H1b̃

∣

∣

∣

2

and γ2 = P2

∣

∣

∣
f̃
H
H2g̃

∣

∣

∣

2

are the
received SNR’s of the source-relay and relay-destination links.
As γ is increasing both inγ1 and γ2, we should maximize
these quantities to maximizeγ. This is accomplished by letting
ã and f̃ to be matched toH1b̃ and H2g̃, and choosing̃b
and g̃ based on:b̃ = argmaxw∈C1

P1‖H1w‖2 and g̃ =

arg maxw∈C2
P2‖H2w‖2. The corresponding received SNR

values are

γ̃1 = max
w∈C1

P1‖H1w‖2
, γ̃2 = max

w∈C2

P2‖H2w‖2
, (20)

and the maximum received SNR of the quantized schemeγ̃

can be computed by substituting these quantities in (19):

γ̃ =
γ̃1γ̃2

1 + γ̃1 + γ̃2
. (21)

In Appendix II.A, we use the distributions of the optimal
beamforming vectorsb1 and g1 for Rayleigh channels to
compute the following upper bound for the total loss in SNR
caused by quantization.

E{γ⋆}−E{γ̃}≤2mnP1

(

1−N1

(

δ1

2

)2(m−1)(

1−δ1
2

)

)

+2nlP2

(

1−N2

(

δ2

2

)2(n−1)(

1−δ2
2

)

)

. (22)

This upper bound is decreasing inδ1 andδ2 for anym > 1 and
n > 1. Therefore, to minimize this upper bound, we should
maximize the minimum distancesδ1 and δ2. This proves the
efficiency of the Grassmannian codebooks for quantizing the
optimal beamforming vectors.

IV. MIMO AF R ELAY CHANNEL WITH THE DIRECT L INK

In this section, the direct link is included in the system
model (Fig. 4). The optimal unquantized scheme is derived
in Section IV.A and the quantization scheme is presented in
Section IV.B. Finally, in Section IV.C we introduce a modified
quantized scheme, which significantly reduces the number of
feedback bits with a negligible degradation in the system
performance.

A. Optimal Unquantized Scheme

Consider the half-duplex MIMO relay channel in Fig. 4. At
the first time slot, the relay is silent and the destination receives
its symbol. At the second time slot, the source is silent and
the relay amplifies and forwards its signal (received in the first

R e l a y p o w e rc o n s t r a i n tS o u r c e p o w e rc o n s t r a i n t
Fig. 4. MIMO AF relay channel with the direct link.

time slot) to the destination. The destination has access totwo
received symbolsy0 andy1 separated in time:

y0=
√

P0r
H
0 H0sx+ r

H
0 z0,

y1=
√

P1P2r
H
1 H2WH1sx+ r

H
1

(

√

P2H2Wz1 + z2

)

.

The destination combinesy0 and y1 to compute the output
symbolxout = α0y0 + α1y1. To maximize the total received
SNR, α0 andα1 should be MMSE (or scaled MRC) coeffi-
cients,4 which result in the total received SNR:

γ = γ0 + γr, (23)

whereγ0 andγr are the received SNR values of the direct link
and the source-relay-destination link. Therefore, the total SNR
is maximized ifγ0 andγr are maximized. The only common
parameter in maximizing these two quantities is the source
beamforming vectors. By fixing s and following the same
steps as in Section III, the optimal values of other parameters
can be easily derived, as shown in Fig. 5a. The corresponding
received SNR’s of the direct link and relay link are:

γ0 = P0‖H0s‖2
, γr =

γ1γ
⋆
2

1 + γ1 + γ⋆
2

, (24)

whereγ1 = P1‖H1s‖2 and γ⋆
2 = P2‖H2g1‖2 = P2ψ

2
1 . By

combining (23) and (24) the total received SNR is:

γ =
P1‖H1s‖2

γ
⋆
2

1 + P1‖H1s‖2 + γ⋆
2

+ P0‖H0s‖2
.

Therefore, the optimals can be expressed as:

s
⋆ = arg max

‖s‖=1

‖H1s‖2

‖H1s‖2 + λ
+ µ‖H0s‖2

, (25)

where λ =
1+γ⋆

2

P1
and µ = P0

γ⋆
2

. The corresponding total
received SNR is:

γ
⋆ =

γ
⋆
1γ

⋆
2

1 + γ⋆
1 + γ⋆

2

+ γ
⋆
0 , (26)

whereγ⋆
0 = P0‖H0s

⋆‖2 andγ⋆
1 = P1‖H1s

⋆‖2.
The objective function of the problem in (25) can potentially

have multiple local maximum points. Moreover, the global
maximum point is not unique5. This problem does not appear
to have an analytic solution and as a result we use a numerical

4More exactly,α0 =
d∗
0

σ2
0

andα1 =
d∗
1

σ2
1

, whered0 =
√

P0r
H
0 H0s, d1 =

√

P1P2r
H
1 H2WH1s, σ

2
0 = ‖r0‖

2, andσ
2
1=P2

‚

‚WHHH
2 r1

‚

‚

2
+‖r1‖

2.
5If s is a global maximum point, so isejθs, for any θ ∈ R.
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MATCHINGMATCHING R e l a y
(a) MATCHING MATCHINGMATCHING R e l a y
(b)

Fig. 5. (a) Optimal unquantized scheme for MIMO AF relay channel with
the direct link. In the first time slot, the relay and the destination match to
H1s

⋆ and H0s
⋆ respectively. (b) Quantized scheme for MIMO AF relay

channel with direct link. In the first time slot, the relay andthe destination
match toH1s̃ andH0s̃ respectively. In the second time slot, the destination
matches toH2g̃.

approach to perform this optimization, which will be described
in Section V. Despite the fact that we do not have a closed form
expression for the solution of problem (25), we are still able
to identify the distribution of the solution for Rayleigh fading
channels. The main result of this section is the following
theorem.

Theorem 2:For independent Rayleigh channel matricesH0

andH1, the optimal source beamforming vectors
⋆ that max-

imizes the total received SNR (or equivalently the objective
function in (25)) is uniformly distributed on the unit sphere in
Cm, wherem is the number of source antennas.

Proof: See Appendix I.
The result in Theorem 2 is used in Appendix II.B to derive

an SNR loss upper bound, similar to (2) and (22), which
justifies use of the Grassmannian codebook for quantizing the
optimal source beamforming vectors

⋆.

B. Quantization Scheme

Having identified the optimal scheme, we continue by
considering the quantization scheme in Fig. 5b. The source-
destination, source-relay, relay-destination and total received
SNR values are given by:

γ0 = P0‖H0s̃‖2
, γ1 = P1‖H1s̃‖2

, γ2 = P2‖H2g̃‖2
,

γ =
γ1γ2

1 + γ1 + γ2
+ γ0. (27)

We need to maximizeγ in (27) with respect to the source and
relay beamforming vectors̃s and g̃, which belong to certain
codebooksC1(N1, δ1) and C2(N2, δ2) as in Section III.B.
Clearly, g̃ should be chosen to maximizeγ2:

g̃ = arg max
w∈C2

P2‖H2w‖2
, (28)

and the corresponding relay-destination received SNR is:γ̃2 =

max
w∈C2

P2‖H2w‖2. For choosing̃s, we need to know bothH0

andH1. In reality, however, such a knowledge is not available,
and the destination and relay should somehow exchange their
information aboutH0 and H1. In this paper, we focus on
a system, where the destination quantizesH0 and sends it
to the relay6. It should be noted that, the only way that
H0 contributes to the problem in (27) is through the term
‖H0w‖2, which can be expanded as follows:‖H0w‖2 =
∑R0

i=1 ν
2
i |eH

i w|2, whereνi’s and ei’s are the singular values
and right singular vectors ofH0 and R0 = rank(H0).
Therefore, the relay only needs to know the singular values
and the right singular vectors of the direct link channel. Since
our focus in this paper is on the vector quantization feedback
schemes, we assume that the relay knows the singular values
completely but has only access to the quantized versions of
the singular vectors. For quantizing the singular vectors,the
destination and the relay share a codebookC0(N0, δ0), which
is possibly different fromC2 (used for determining̃g). We
assume that the destination quantizes each vectorei to a vector
ẽi ∈ C0 that is closest toei:7

ẽi = arg min
w∈C0

d(w, ei). (29)

Having νi’s and ẽi’s at the relay, the problem of finding the
source beamforming vector̃s can be formulated as:

s̃ = arg max
w∈C1

‖H1w‖2

‖H1w‖2 + λ̃
+ µ̃

R0
∑

i=1

ν
2
i |ẽH

i w|2, (30)

where λ̃ = 1+γ̃2

P1
, µ̃ = P0

γ̃2
, and γ̃2 = maxw∈C2

P2‖H2w‖2.
The total received SNR̃γ can be computed by substituting (28)
and (30) in (27). In Appendix II.B, we use the distribution of
s
⋆, given in Theorem 2, to prove the following upper bound

on the average loss in SNR due to quantization:

E{γ⋆}−E{γ̃} ≤ 4mlP0

(

1−N0

(

δ0

2

)2(m−1)(

1−δ0
2

)

)

+2 (mlP0 +mnP1)

(

1−N1

(

δ1

2

)2(m−1)(

1−δ1
2

)

)

+2nlP2

(

1−N2

(

δ2

2

)2(n−1)(

1−δ2
2

)

)

. (31)

The upper bound in (31) is decreasing inδ0 = δ(C0) for any
m > 1. This justifies use of the Grassmannian codebook to
quantize the singular vectors ofH0, since it has the maximum
minimum distanceδ0. The same conclusion holds forC1

and C2, since the upper bound in (31) is decreasing inδ1
and δ2 for any m,n > 1. To summarize the results, all
three codebooksC0, C1 and C2 need to be Grassmannian
codebooks to minimize the upper bound of the loss in the total

6In this case, the relay becomes responsible for determiningthe source
beamforming vector. Equivalently, we could assume that therelay quantizes
H1 and sends it to the destination, in which case the destination would
determine the source beamforming vector.

7Throughput this paper, the notion of “closeness” is based onthe “distance”
defined by the chordal distance function in (1).
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received SNR. We refer to the scheme, identified by (30), as
the “properly quantized scheme”.

In the following, we outline the steps in determining the
beamforming vectors of the “properly quantized scheme” (Fig.
5b).

1) The destination uses a Grassmannian codebookC2,
shared between the destination and the relay, to quantize
g, the dominant right singular vector of the relay-
destination channelH2. The label of the quantized
vector is sent to the relay. The relay uses this vector for
its beamforming in the second time slot. The destination
also sends the SNR valuẽγ2 to the relay. This will be
used in step 3.

2) The destination quantizes the right singular vectors of
the source-destination channel using a separate Grass-
mannian codebookC0, which is also shared between
the destination and the relay. The labels of the quantized
vectors and the singular valuesνi’s are sent to the relay.

3) The relay forms the objective function in (30) and max-
imizes it over the Grassmannian codebookC1, which
is shared between the source and the relay. The relay
sends the label of the maximizing vector to the source.
The source uses this vector for its beamforming in the
first time slot.

Before concluding Section IV, we introduce a modified
scheme which performs very close to the “properly quantized
scheme” and requires fewer number of feedback bits.

C. Modified Quantized Scheme

Consider the problem of determining the source beamform-
ing vector for the quantization scheme in Fig. 5b, i.e. (30).
There are two links between the source and the destination: the
direct source-destination link and the source-relay-destination
link, which we refer to as the relay link.

If the direct link is much weaker than the relay link and can
be ignored, our problem reduces to the problem in Section
III and the relay does not need to know anything about
the direct link channelH0. On the other hand, if the relay
link is very weak and can be ignored, the only thing that
relay needs to know aboutH0 is its dominant right singular
vector. Therefore, in both of these extreme cases we do not
need to have any knowledge ofH0 other than its dominant
right singular vector. Based on this intuition, we propose a
new scheme, referred to as the “modified quantized scheme”,
in which the destination only quantizes the dominant right
singular vector ofH0 and sends the corresponding codeword
index (and the largest singular valueν1) to the relay. The relay
then determines the source beamforming vector by forming the
following problem.

s̃modified = arg max
w∈C1

‖H1w‖2

‖H1w‖2 + λ̃
+ µ̃ν

2
1 |ẽH

1 w|2, (32)

whereλ̃ and µ̃ have the same definitions as in (30).
The “modified quantized scheme” requires much fewer

number of feedback bits, since it only quantizes one singular
vector (see step 2 for the “properly quantized scheme”). Our
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Fig. 6. Performance of the Grassmannian, MMSE, and random quantizers
without the direct link. The relay-destination link SNR is fixed at8dB.

simulation and analytical results show that the “modified quan-
tized scheme” performs very close to the “properly quantized
scheme”, as we will see in Section V.

V. SIMULATION RESULTS

The simulation results are divided into two subsections.
In Section V.A the direct link between the source and the
destination is ignored (Fig. 2). In Section V.B, the simulation
results are presented for the case where the direct link is
present in the model (Fig. 4).

The general setup for the simulations is as follows. The
input symbols belong to a BPSK constellation with unit power.
The entries of the channel matrices are generated indepen-
dently according toCN (0, 1). To model quasi-static fading
channels, the simulation time is divided to20, 000 coherence
intervals, each consisting of200 symbols. The channels are
assumed to be constant over each coherence interval and to
be independent from one interval to the other.

A. MIMO AF Relay Channel without the Direct Link

In this section, all of the terminals are assumed to have
two antennas (m=n=l=2). The relay-destination link SNR is
fixed at P2 = 8dB and the BER values have been recorded
for different values of the source-relay link SNRP1.

For quantization purposes, the source and the relay share a
codebookC1 of sizeN1. Similarly, the relay and destination
share a codebookC2 of sizeN2. Fig. 6 compares the per-
formance of the “optimal unquantized scheme” (Fig. 3a) with
the performance of the Grassmannian codebooksC1 andC2

of sizesN1=N2=4 or 8. The Grassmannian codebooks are
adopted from [5]. The total number of the feedback bits used
by the Grassmannian quantizer islog2N1+ log2N2 which
equals4 or 6 bits forN1=N2=4 or 8 respectively. As Fig. 6
shows, we can get very close to the optimal scheme with only
a few number of bits per each coherence interval.
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Fig. 6 also compares the performance of the Grassmannian
quantizer with other quantization schemes. For the MMSE
quantization scheme, we have used two bits to quantize each
channel entry. Form=n=l=2, this results in2(mn+nl)=16

bits. For the random quantizer, we use a set of randomly
selected vectors on the unit sphere as the quantization code-
words. The performance of the random scheme has been
averaged over ten such codebooks. As Fig. 6 shows, the
Grassmannian codebooks show considerable gain as compared
to the random quantizer. However, this gain decreases as the
codebook sizes are increased from4 to 8. The main advantage
of the random codebooks is that they are easier to generate as
compared to the Grassmannian codebooks.

B. MIMO AF Relay Channel with the Direct Link

In this section, all the stations are assumed to have three
antennas (m=n=l=3). Fig. 7 shows the BER values for
quantized and unquantized schemes as a function of direct
link SNR P0, when the source-relay and relay-destination
link SNR’s are fixed atP1 = P2 = 2dB. For the optimal
scheme, we use the gradient descent method for determining
the source beamforming vector from (25). The constraint
‖s‖=1 is eliminated by the change of variables= u

‖u‖ .
The “modified unquantized scheme” in Fig. 7 has the

same structure as the “optimal unquantized scheme” with the
difference that the relay only considers the dominant singular
value and singular vector ofH0 in formulating the problem
of determining the source beamforming vector. This problem
is exactly the same as the problem (25), used by the optimal
scheme, except that‖H0s‖2 is replaced byν2

1 |eH
1 s|2, where

ν1 ande1 are the dominant singular value and right singular
vector ofH0. We can analytically show that the average SNR
loss of the “modified unquantized scheme” compared with
the “optimal unquantized scheme” is at most10 log10(1 +

E{ν2
2}/E{ν2

1}), whereν2 is the second largest singular value
of H0. Form=l=3, this bound is equal to1.24dB. Although
this bound guarantees that modified scheme would perform
well, it is not necessarily tight, as the simulation resultsin Fig.
7 show that the actual SNR loss is very small. The “modified
unquantized scheme” is the basis for the “modified quantized
scheme” in Section IV.C.

The “properly quantized scheme”, as discussed in Section
IV.B, consists of three codebooksC0, C1 andC2 of sizesN0,
N1 andN2. Fig. 7 shows the performance of the “properly
quantized scheme” with Grassmannian codebooks of sizes
N0=N1=N2=8 or 16, adopted from [17].

The figure also shows the performance of the Grassmannian
codebooks with “modified quantized scheme” (see Section
IV.C). This scheme shows a negligible performance degra-
dation with respect to the “properly quantized scheme”, but
requires fewer number of feedback bits. Following the three
steps for the “properly quantized scheme” in Section IV.B,
one can easily check that we need a total of(1 + R0)b +

log2(N
R0

0 N1N2) feedback bits for the “properly quantized
scheme” and2b + log2(N0N1N2) bits for the “modified
quantized scheme”. Hereb is the number of bits that a (hypo-
thetical) scalar quantizer uses for quantizing a scalar value.
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Fig. 7. Performance of the quantized and unquantized schemes with the
direct link. The source-relay and relay-destination link SNR’s are fixed at
P1 = P2 = 2dB.
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Table I compares these values forN=N0=N1=N2=8, 16,
m=n=l=3, and full rank channel matrixH0. Fig. 7 also
shows the performance of the MMSE quantizer. This quan-
tizer requires2(mn+ml+ln) bits for quantizing the channel
matrices andb bits for quantizing̃γ2.

Fig. 8 compares the performance of the same schemes of
Fig. 7 in a different scenario. For this figure, the direct link
and relay-destination link SNR’s are fixed atP0 = −4dB and
P2 = 2dB. The BER values have been recorded for different
values of the source-relay link SNRP1. Once again, we see
that the performance of the “modified quantized scheme” is
very close to the “properly quantized scheme”.
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TABLE I

COMPARISON OF THENUMBER OF THEFEEDBACK BITS FORDIFFERENT

QUANTIZATION SCHEMES; m = n = l = 3;

N0 = N1 = N2 = N = 8, 16.

Scheme Number of feedback bits
N = 8 N=16

Properly quantized 15 + 4b 20 + 4b

Modified quantized 9 + 2b 12 + 2b

MMSE 54 + b

VI. CONCLUSION

In this paper, we derived the optimal source and relay
beamforming vectors to maximize the total received SNR
of MIMO AF relay channel both with and without the di-
rect link. For the limited feedback scenario, we proposed a
quantization scheme based on the Grassmannian codebooks
and analytically proved its efficiency. A modified quantized
scheme was also presented, which performs very close to the
original quantization scheme and requires considerably fewer
number of feedback bits. Finally, the analytical results were
verified by comparing the performances of the unquantized
and quantized schemes under different scenarios.

APPENDIX I
THE DISTRIBUTION OF THEOPTIMAL BEAMFORMING

VECTORs
⋆

In this appendix, we show that there exists a solutions
⋆

to the problem (25) that is uniformly distributed on the unit
sphere inCm, wherem is the number of source antennas. The
problem (25) is repeated here:

s
⋆ = arg max

‖s‖=1

‖H1s‖2

‖H1s‖2 + λ
+ µ‖H0s‖2

, (I.1)

ConsiderH0 = U0Σ0V
H
0 andH1 = U1Σ1V

H
1 as the SVD

of H0 and H1. Clearly, ‖H0s‖ =
∥

∥Σ0V
H
0 s
∥

∥ and ‖H1s‖ =
∥

∥Σ1V
H
1 s
∥

∥, sinceU0 andU1 are unitary matrices.
It is easy to check thats⋆ = V0η(Σ0,Σ1,V

H
1 V0) is a

solution to (I.1), where the functionη(·, ·, ·) is defined to be
a solution to the following problem:

η(Σ0,Σ1,V
H
1 V0)

def
=

arg max
‖t‖=1

∥

∥Σ1V
H
1 V0t

∥

∥

2

∥

∥Σ1V
H
1 V0t

∥

∥

2
+ λ

+ µ ‖Σ0t‖2
. (I.2)

If we fix Σ0 andΣ1, the solutions⋆, identified above, can be
expressed as a function ofV0 andV1:

s
⋆ = ζ

Σ0,Σ1
(V0,V1)

def
= V0η(Σ0,Σ1,V

H
1 V0). (I.3)

Now, for any unitary matrixQ, we have the following from
(I.3):

ζ
Σ0,Σ1

(QV0,QV1) = Qζ
Σ0,Σ1

(V0,V1) = Qs
⋆
.

For a Rayleigh channel matrixH0, we know that the matrix
V0 is independent ofΣ0 and its distribution does not change
by pre-multiplication by a unitary matrixQ. The same argu-
ment holds forH1, V1 and Σ1. Therefore, conditioned on

Σ0 andΣ1, the matrixQV0 has the same distribution asV0,
and similarly QV1 has the same distribution asV1. Since
the source-destination and source-relay channels are assumed
to be independent,V0 and V1 are also independent, and
therefore the joint distribution of(V0,V1) is also the same
as the joint distribution of(QV0,QV1). Hence, any arbitrary
function of these pairs will have the same distribution. By
applying this to the functionζ

Σ0,Σ1
(·), we conclude that

s
⋆ = ζ

Σ0,Σ1
(V0,V1) and Qs

⋆ = ζ
Σ0,Σ1

(QV0,QV1) have
the same distribution. Since this is true for any unitary matrix
Q, we conclude thats⋆ is uniformly distributed on the complex
unit sphere, conditioned onΣ0 andΣ1.

Note that if the conditional distribution ofs⋆ is uniform,
its unconditional distribution is also uniform. Moreover,the
random vectors⋆ is independent of the random matricesΣ0

and Σ1, since its conditional and unconditional distributions
are the same.

APPENDIX II
PROOF OFSNR LOSSUPPERBOUNDS

In this appendix, we prove the SNR loss upper bounds of
(22) and (31) using the following lemmas. The proofs of these
lemmas will not be given for the sake of brevity.

Lemma 1:For nonnegative variablesx1, x2, y1 andy2, we
have:
∣

∣

∣

∣

x1y1

1 + x1 + y1
− x2y2

1 + x2 + y2

∣

∣

∣

∣

≤ |x1 − x2| + |y1 − y2|.
Lemma 2:For the matrixH ∈ Cp×q with independent

CN (0, 1) entries, we have:E
{
∑

i σ
2
i

}

= pq, whereσi’s are
the singular values ofH.

Lemma 3:For any unit vectorsu, v, andw, we have:
∣

∣

∣

∣

∣u
H
v
∣

∣

2 −
∣

∣v
H

w
∣

∣

2
∣

∣

∣
≤ 2d(u,w),

where the distance functiond(·, ·) is defined in (1).
Lemma 4:Consider the codebookC = {w1,w2, · · · ,wN}

and the matrixH with σi’s as its singular values. For any unit
vectors, defines

C
∈ C as the closest vector in codebookC

to s and letd
C
(s)

def
= d(s, s

C
), whered(·, ·) is the distance

function defined in (1). Then, we have:

∣

∣‖Hs‖2 − ‖Hs
C
‖2
∣

∣ ≤ 2

(

∑

i

σ
2
i

)

d
C
(s),

Lemma 5:Consider the codebookC(N, δ) and the function
d

C
(·) defined in Lemma 4. For the random vectors ∈ Cm

uniformly distributed on the unit sphere, we have:

E {d
C
(s)} ≤ 1 −N

(

δ

2

)2(m−1)(

1 − δ

2

)

.

A. Proof of the Upper Bound in (22)

The optimal unquantized scheme SNR and the quantized
scheme SNR are given in (17) and (21), which are repeated
here:

γ
⋆ =

γ
⋆
1γ

⋆
2

1 + γ⋆
1 + γ⋆

2

, γ̃ =
γ̃1γ̃2

1 + γ̃1 + γ̃2
, (II.1)

whereγ⋆
1 , γ⋆

2 , γ̃1 and γ̃2 are defined in (18) and (20). Clearly
γ

⋆
1 ≥ γ̃1 and γ⋆

2 ≥ γ̃2, and therefore,γ⋆ ≥ γ̃. Our goal is
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to boundγ⋆ − γ̃. For this purpose, we need the following
definitions:

γ
′
1
def
= P1‖H1b

′‖2
, γ

′
2
def
= P2‖H2g

′‖2
, γ

′def
=

γ
′
1γ

′
2

1+γ′1+γ
′
2

,

whereb′ is the closest vector in the codebookC1 to b1, andg′

is the closest vector in the codebookC2 to g1. By considering
the definitions of̃γ1 and γ̃2 in (20) and the fact thatb′ ∈ C1

and g
′ ∈ C2, it is clear thatγ̃1 ≥ γ

′
1 and γ̃2 ≥ γ

′
2, and

therefore,̃γ ≥ γ
′. Hence, we can write:

γ
⋆ − γ̃ ≤ γ

⋆ − γ
′=

γ
⋆
1γ

⋆
2

1 + γ⋆
1 + γ⋆

2

− γ
′
1γ

′
2

1 + γ′1 + γ′2
(a)
≤(γ⋆

2 − γ
′
2) + (γ⋆

1 − γ
′
1) , (II.2)

where (a) follows from Lemma 1. The terms on the right side
of (II.2) can be bounded as follows.

Noting the definitions ofγ⋆
1 , γ′1, we have:

γ
⋆
1−γ′1=P1

(

‖H1b1‖2−‖H1b
′‖2
)

(b)
≤ 2P1

(

∑

i

φ
2
i

)

d
C1

(b1),

where (b) follows from Lemma 4, andφi’s are singular values
of H1. The termγ⋆

2−γ′2 can be similarly bounded. Combining
these bounds with (II.2), we get the following upper bound:

γ
⋆ − γ̃ ≤ 2P1

(

∑

i

φ
2
i

)

d
C1

(b1) + 2P2

(

∑

i

ψ
2
i

)

d
C2

(g1),

(II.3)
whereψi’s are singular values ofH2. Noting that the singular
vectorsb1 andg1 are uniformly distributed on the unit spheres
(of the corresponding dimensions) and are independent of the
singular values, we can apply Lemma 2 and 5 to (II.3) to
achieve the upper bound in (22).

B. Proof of the Upper Bound in (31)

Define:

γ(s1, s2)
def
=

γ1(s1)γ2(s2)

1 + γ1(s1) + γ2(s2)
+ γ0(s1), (II.4)

whereγi(s)
def
= Pi‖His‖2, for i = 0, 1, 2. With this definition,

the SNR of the optimal unquantized schemeγ⋆ and the SNR
of the “properly quantized scheme”̃γ can be expressed as:

γ
⋆ = γ(s⋆

,g1) =
γ

⋆
1γ

⋆
2

1 + γ⋆
1 + γ⋆

2

+ γ
⋆
0 , (II.5)

γ̃ = γ(s̃, g̃). (II.6)

In (II.5), g1 is the dominant right singular vector ofH2, and
s
⋆ is defined in (25). Alsoγ⋆

0 = γ0(s
⋆), γ⋆

1 = γ1(s
⋆), and

γ
⋆
2 = γ2(g1). In (II.6), g̃ = argmaxw∈C2

γ2(w), as defined
in (28), ands̃, defined in (30), can be expressed as:

s̃ = arg max
w∈C1

χ(w, g̃), (II.7)

where

χ(s1, s2)
def
=

γ1(s1)γ2(s2)

1+γ1(s1)+γ2(s2)
+P0

∑

i

ν
2
i

∣

∣ẽ
H
i s1

∣

∣

2
. (II.8)

Here νi’s are the singular values ofH0 and ẽi =

argminw∈C0
d(w, ei), whereei’s are the right singular values

of H0.
Our goal is to bound the SNR lossγ⋆− γ̃. For this purpose,

we need to define:

s
′ = arg max

w∈C1

γ(w, g̃) , γ
′ = γ(s′, g̃). (II.9)

We can write:

γ
⋆ − γ̃ = (γ⋆ − γ

′) + (γ′ − γ̃) . (II.10)

Based on the definitions given above, each of these terms can
be bounded as follows.

Step 1) Boundingγ⋆ − γ
′:

Define:

γ
′′ def

=
γ
′′
1 γ

′′
2

1 + γ′′1 + γ′′2

+ γ
′′
0 ,

γ
′′
0

def
= γ0(s

′′), γ
′′
1

def
= γ1(s

′′), γ
′′
2

def
= γ2(g

′′), (II.11)

wheres
′′ ∈ C1 is the closest vector in the codebookC1 to

s
⋆, andg

′′ ∈ C2 is the closest vector in the codebookC2 to
g1. Noting the definitions of̃g ands

′, it is clear thatγ′ ≥ γ
′′

and we can write:

γ
⋆−γ′ ≤ γ

⋆−γ′′≤
∣

∣

∣

∣

γ
⋆
1γ

⋆
2

1+γ⋆
1+γ⋆

2

− γ
′′
1 γ

′′
2

1+γ′′1 +γ′′2

∣

∣

∣

∣

+ |γ⋆
0−γ′′0 |

(a)
≤|γ⋆

2 − γ
′′
2 | + |γ⋆

1 − γ
′′
1 | + |γ⋆

0 − γ
′′
0 |

(b)
=P2

∣

∣‖H2g1‖2−‖H2g
′′‖2
∣

∣+P1

∣

∣‖H1s
⋆‖2−‖H1s

′′‖2
∣

∣

+P0

∣

∣‖H0s
⋆‖2−‖H0s

′′‖2
∣

∣

(c)
≤2P2

(

∑

i

ψ
2
i

)

d
C2

(g1)+2P1

(

∑

i

φ
2
i

)

d
C1

(s⋆)

+2P0

(

∑

i

ν
2
i

)

d
C1

(s⋆),

(II.12)

where we have used Lemma 1 for (a). In (b),{γ⋆
i }2

i=0 and
{γ′′i }2

i=0 have been replaced by their definitions. Finally, (c)
results from Lemma 4.

Step 2) Boundingγ′ − γ̃:
For this step, we will need the following lemma.

Lemma 6:For any unit vectors, we have:

|γ(s, g̃) − χ(s, g̃)| ≤ 2P0

∑

i

ν
2
i dC0

(ei).

Proof: Noting the definition ofγ(·, ·) in (II.4),

γ(s, g̃) =
γ1(s)γ2(g̃)

1 + γ1(s) + γ2(g̃)
+ P0

∑

i

ν
2
i

∣

∣e
H
i s
∣

∣

2
.

Therefore,

|γ(s, g̃) − χ(s, g̃)|= P0

∣

∣

∣

∣

∣

∑

i

ν
2
i

(

∣

∣e
H
i s
∣

∣

2 −
∣

∣ẽ
H
i s
∣

∣

2
)

∣

∣

∣

∣

∣

(a)

≤2P0

∑

i

ν
2
i d(ei, ẽi),
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where in (a), we have used Lemma 3. Noting the definition of
ẽi’s, we haved(ei, ẽi) = d

C0
(ei) and the proof is complete.

Let θ = 2P0

∑

i ν
2
i dC0

(ei), then we have:

γ
′ = γ(s′, g̃)

(a)
≤ χ(s′, g̃) + θ

(b)
≤ χ(s̃, g̃) + θ

(c)
≤γ(s̃, g̃) + 2θ

=γ̃ + 2θ, (II.13)

where in (a) and (c) we have used Lemma 6, and (b) results
from (II.7) and the fact thats′ ∈ C1. By combining (II.10),
(II.12) and (II.13) we get the following upper bound:

γ
⋆ − γ̃ ≤ 4P0

∑

i

ν
2
i dC0

(ei) + 2P2

(

∑

i

ψ
2
i

)

d
C2

(g1)

+2

(

P1

(

∑

i

φ
2
i

)

+ P0

(

∑

i

ν
2
i

))

d
C1

(s⋆). (II.14)

From Appendix I,s⋆ is uniformly distributed on the unite
sphere and is independent of the singular valuesφi’s and
νi’s. The same argument holds for the singular vectorsg1

andei’s and the corresponding singular valuesψi’s andνi’s.
By considering these facts and taking the expectation of both
sides of (II.14) and using Lemma 2 and 5, we get the upper
bound in (31).
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