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Reciprocity in Gaussian Vector Channels

X YY X

Z1 ∼ N (0, I) Z2 ∼ N (0, I)

E[XTX] ≤ P E[Y TY ] ≤ P

H HT

• Capacities of the channels H and HT are the same

– under the same power constraint;
– even if H is not square.

• Proof: H and HT have the same singular values.
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Reciprocity for Multi-User Channels
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• Duality exists between Gaussian vector MAC and BC Channels
(Vishwanath, Jindal, Goldsmith ’03, Viswanath, Tse ’03).

• Goal of this talk: Generalization and re-interpretation of duality.
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Uplink-Downlink Duality

The multiple-access channel and the broadcast channel are duals.
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Previous proofs of duality depend critically on the power constraint.

Why is there duality?
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Main Results of This Talk

1. Uplink-Downlink Duality is equivalent to Lagrangian Duality

2. Duality generalizes beyond the sum power constraint
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Broadcast Channel with ⇐⇒ Multiple Access Channel with
Arbitrary input constraints Uncertain noise
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Multiple Antenna Broadcast Channel

• Non-degraded Gaussian vector broadcast channel:

Zn

Xn

Y n
1

Y n
K

H

W1 ∈ 2nR1

WK ∈ 2nRK
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• Capacity region is solved recently.

– This talk focuses on sum capacity C = max{R1 + · · · + RK}.

Wei Yu and Tian Lan, University of Toronto 5



Achievability: Writing on Dirty Paper

Gaussian Channel ... with Transmitter Side Information

Z ∼ N (0, Sz) Z ∼ N (0, Sz)S ∼ N (0, Ss)

XX YY

C =
1
2

log
|Sx + Sz|

|Sz|
C =

1
2

log
|Sx + Sz|

|Sz|

• Capacities are the same if S is known non-causally at the transmitter.
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Converse: Sato’s Outer Bound

• Broadcast capacity does not depend on noise correlation: Sato (’78).
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{
p(z1) = p(z′1)
p(z2) = p(z′2)

, not necessarily p(z1, z2) = p(z′1, z
′
2).

• So, sum capacity C ≤ min
Sz

max
Sx

I(X;Y).
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Three Achievability Proofs

1. Decision-Feedback Equalization approach (Yu, Cioffi)

• Worst-noise diagonalizes the feedforward matrix of a DFE.

2. Uplink-Downlink duality approach (Viswanath, Tse)

• Noise covariance is equivalent to the input constraint in dual channel.
• Worst-noise decouples the inputs in the dual channel.

3. Convex duality approach (Vishwanath, Jindal, Goldsmith)

• Channel flipping between multiple access channel and broadcast
channel.

This talk: A new derivation of duality.
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Gaussian Broadcast Channel Sum Capacity

• Achievability: C ≥ max
Sx

min
Sz

I(X;Y).

• Converse: C ≤ min
Sz

max
Sx

I(X;Y).

• Gaussian vector broadcast channel sum capacity is therefore exactly:

C = max
Sx

min
Sz

1
2

log
|HSxHT + Sz|

|Sz|

.

Duality can be derived directly from the minimax expression!

Wei Yu and Tian Lan, University of Toronto 9



Minimax Optimization

• Gaussian vector broadcast channel sum capacity is the solution of

max
Sx

min
Sz

1
2

log
|HSxH

T + Sz|
|Sz|

subject to tr(Sx) ≤ P

Sz =
[

I ?
? I

]

Sx, Sz ≥ 0

• The minimax problem is convex in Sz, concave in Sx.

– How to solve this minimax problem?
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Duality through Minimax

• Two KKT conditions must be satisfied simultaneously:

HT (HSxHT + Sz)−1H = λI

S−1
z − (HSxHT + Sz)−1 =

[
Ψ1 0
0 Ψ2

]

• For the moment, assume that H is invertible.

⇒ HTS−1
z H − λI = HTΨH

⇒ H(HTΨH + λI)−1HT = Sz

• Further manipulation: ⇒ (λI)−1 − (HTΨH + λI)−1 = Sx.
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A New Minimax Duality

KKT conditions lead to a new minimax problem:

max
Sx

min
Sz

1
2

log
|HSxHT + Sz|

|Sz|
min

λ
max

Ψ

1
2

log
|HTΨH + λI|

|λI|
s.t. tr(Sx) ≤ P s.t. tr(Ψ) ≤ λP

Sz =
[

I ?
? I

]
Ψ is diagonal

Sx, Sz ≥ 0 Ψ ≥ 0, λ ≥ 0

Minimax duality is equivalent to Lagrangian duality.
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Construct the Dual Channel

KKT condition: H(HTΨH + λI)−1HT = Sz

• Define the diagonal matrix: D = Ψ/λ. trace(D) =
∑

i Ψi/λ = P .

• Sz =
[

I ?
? I

]
. Thus, constraint on D: trace(D1) + trace(D2) ≤ P .
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Uplink-Downlink Duality
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Theorem 1. Under the same power constraint, the Gaussian vector
multiple-access channel and the Gaussian vector broadcast channel have
the same sum capacity.

New Proof: By re-defining D = Ψ/λ, the minimization part of the
minimax dual problem disappears.
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Generalized Minimax Duality

Theorem 1 may be generalized to arbitrary linear constraints:

max
Sx

min
Sz

1
2

log
|HSxHT + Sz|

|Sz|
max
Σz

min
Σx

1
2

log
|HTΣzH + Σx|

|Σx|
s.t. tr(SxQx) ≤ 1 s.t. tr(ΣzΨz) ≤ 1

tr(SzQz) ≤ 1 tr(ΣxΨx) ≤ 1

Sx, Sz ≥ 0 Σx,Σz ≥ 0

Relation: Sx = λxΨx Sz = λzΨz Σx = λxQx Σz = λzQz
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Generalized Uplink-Downlink Duality
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Q1: Input constraint in BC and Noise covariance in MAC.
Q2: Worst noise covariance in BC and Input constraint in MAC.
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Per-Antenna Power Constrained Broadcast Channel

max
Sx

min
Sz

1
2

log
|HSxHT + Sz|

|Sz|
max

Ψ
min

Λ

1
2

log
|HTΨH + Λ|

|Λ|

s.t. Sx(i, i) ≤ Pi s.t. tr(Ψ) ≤
∑

i

Pi

Sz =
[

I ?
? I

] ∑

i

Λ(i, i)Pi ≤ 1

Sx, Sz ≥ 0 Λ,Ψ ≥ 0, and diagonal

Theorem 2. The dual of a Gaussian vector broadcast channel with
individual per-antenna power constraint is a multiple-access channel with a
diagonal and linearly constrained uncertain noise.
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Per-Antenna Power Constrained Broadcast Channel
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In addition, this duality applies not only to the sum capacity but also
the entire region.
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Summary and Conclusions

• Sum capacity of a Gaussian vector broadcast channel is:

C = max
Sx

min
Sz

1
2

log
|HSxHT + Sz|

|Sz|

• Lagrangian duality leads to uplink-downlink duality.

• The dual of a broadcast channel with individual power constraint is a
multiple access channel with unknown noise.

• Duality can be very useful from a computational perspective.
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