Gaussian Z-Interference Channel with a Relay Link: Achievable Rate Region and Asymptotic Sum Capacity

Wei Yu and Lei Zhou

Electrical and Computer Engineering Department University of Toronto, CANADA

February 10, 2009

Motivation: Mobile Users at the Cell Edge

- Cellular networks are fundamentally limited by intercell interference.
 - However, receivers are often capable of communicating with each other via independent relay links.
 - Question: Can we use relay links for interference mitigation?

Gaussian Interference Channel with Relay Links

- Fundamental coding strategies:
 - Han-Kobayashi common-private scheme for the interference channel
 - Decode-and-forward or quantize-and-forward for the relay channel
 - Multi-session conversation for the broadcast channel

Two Simplest Models

Figure 1: Type I

- Related work:
 - Sahin and Erkip ('07): Interference channel with an extra relay node
 - Ng, Jindal, Goldsmith, Mitra ('07): Tx and Rx cooperation
 - Maric, Dabora, Goldsmith ('08): Interference-forwarding strategy
 - Simeone, Somekh, Poor, Shamai ('08): 1-D cellular model with relay

Interference Channel: Han-Kobayashi Scheme ('81)

- Basic idea: Allow interference to be partially subtracted.
 - U_1 and U_2 are private messages, W_1 and W_2 are common messages;
 - Achievable region based on intersection of two multiple access regions
- Etkin, Tse, Wang ('07) shows Han-Kobayashi is within 1-bit to capacity.

Type I Gaussian Z-relay interference Channel

- How can Y_2 help Y_1 ?
- Y_2 does not observe X_1 , but it observes the noise at Y_1 .

Natural idea: forward the interference to allow subtraction.

Related Work: A Class of Modulo-Sum Relay Channel

- Y_2 observes a noisy version of the noise Z.
- Quantize-and-forward is capacity achieving (Aleksic, Razaghi, Yu '07)

What if the noise comes from a codebook?

Partial Interference Forwarding for Type I Channel

- Based on Han-Kobayashi common-private splitting:
 - β is the portion of the power assigned to the private message U_2 .
- Achievable rate region is based on the intersection of two multiple access regions: $C_1 : (X_1, W_2) \to Y_2$ with R_0 , and $C_2 : (W_2, U_2) \to Y_2$.

Two Multiple Access Channel Components

Wei Yu and Lei Zhou, University of Toronto. ITA'09

Intersecting Two Pentagons

Union of Pentagons

Figure 3: Weak interference regime.

Figure 4: Strong interference regime.

Type I Channel: Achievable Rate Regions

Theorem 1. For the Gaussian Z-interference channel with a digital link of limited rate R_0 from the clean receiver to the interfered receiver, in the weak interference regime defined by $INR_2 \leq SNR_2$, the following rate region is achievable:

$$\bigcup_{0 \le \beta \le 1} \left\{ (R_1, R_2) \middle| \begin{array}{l} R_1 \le \gamma \left(\frac{\mathsf{SNR}_1}{1 + \beta \mathsf{INR}_2} \right) \\ R_2 \le \min \left\{ \gamma(\mathsf{SNR}_2), \gamma(\beta \mathsf{SNR}_2) + \\ \gamma \left(\frac{(1 - \beta)\mathsf{INR}_2}{1 + \mathsf{SNR}_1 + \beta \mathsf{INR}_2} \right) + R_0 \right\} \end{array} \right\}$$

where $SNR_1 = \frac{|h_{11}|^2 P_1}{N}$, $SNR_2 = \frac{|h_{22}|^2 P_2}{N}$, $INR_2 = \frac{|h_{21}|^2 P_2}{N}$ and $\gamma(x) = \frac{1}{2} \log_2(1+x)$.

In the strong interference regime, defined by

 $\mathsf{SNR}_2 \leq \mathsf{INR}_2 \ \leq \max\{\mathsf{SNR}_2,\mathsf{INR}_2^*\},$

where

$$\mathsf{INR}_2^* = (1 + \mathsf{SNR}_1)(2^{-2R_0}(1 + \mathsf{SNR}_2) - 1),$$

the capacity region is given by:

$$\left\{ (R_1, R_2) \middle| \begin{array}{rrrr} R_1 & \leq & \gamma(\mathsf{SNR}_1) \\ R_2 & \leq & \gamma(\mathsf{SNR}_2) \\ R_1 + R_2 & \leq & \gamma(\mathsf{SNR}_1 + \mathsf{INR}_2) + R_0 \end{array} \right\}.$$

In the very strong interference regime defined by $INR_2 \ge \max{SNR_2, INR_2^*}$, the capacity region is given by:

$$\left\{ (R_1, R_2) \left| \begin{array}{c} R_1 \leq \gamma(\mathsf{SNR}_1) \\ R_2 \leq \gamma(\mathsf{SNR}_2) \end{array} \right\}.$$

Different Interference Regimes: Type I

- Both common message and private message are needed in the weak interference regime.
- In the strong and very strong interference regimes, capacity regions are achieved by an all-common-message scheme ($\beta = 0$).
- A strong-interference channel can be converted to the very strong regimes by a relay link. But weak regime can never be converted to strong regime.

Strong & Very Strong Interference Regimes

Weak Interference Regime

Weak Interference Regime: Discussion

- For fixed R_2 , the relay increases R_1 by less than R_0 bits.
 - Asymptotically at high SNR/INR, the increase in R_1 approaches R_0
 - Reminiscent of deterministic relay channel result (Kim and Cover '06)
- For fixed R_1 , the relay increases R_2 by exactly R_0 bits!

Asymptotic Sum Capacity in Weak Interference

Theorem 2. For the Type I Gaussian Z-interference channel with a relay link of capacity R_0 , when $INR_2 \leq SNR_2$ and

$$\min\{\mathsf{SNR}_1,\mathsf{SNR}_2,\mathsf{INR}_2\}\gg 1.$$
 (1)

the asymptotic sum capacity is given by:

$$C_{sum}(R_0) \approx C_{sum}(0) + R_0 \tag{2}$$

where the notation $f(x) \approx g(x)$ is used to denote $\lim_{N\to 0} f(x) - g(x) = 0$.

Type II Gaussian Z-relay Interference Channel

- How can Y_1 help Y_2 ?
 - Strong interference: Y_1 can decode-and-forward common information
 - Weak interference: Y_1 can quantize-and-forward private information

Relay Strategy for the Type II Channel

- Decode-and-forward W_2 using R_b .
- Quantization-and-forward U_2 using R_a .
 - Strategy #1: Quantize $h_{21}U_2 + Z_1$, with W_2 subtracted.
 - Strategy #2: Quantize $h_{21}(U_2 + W_2) + \alpha W_2 + Z_1$. Optimize α !

Type II Channel: Achievable Rate Regions

Theorem 3. For the Type II Gaussian Z-relay interference channel with relay rate R_0 , in the weak interference regime defined by $INR_2 \leq SNR_2$, the following rate region is achievable

$$\bigcup_{0 \le \beta \le 1} \left\{ (R_1, R_2) \left| R_1 \le \gamma \left(\frac{\mathsf{SNR}_1}{1 + \beta \mathsf{INR}_2} \right) \right|, \\
R_2 \le \gamma (\beta \mathsf{SNR}_2) + \gamma \left(\frac{\overline{\beta} \mathsf{INR}_2}{1 + \mathsf{SNR}_1 + \beta \mathsf{INR}_2} \right) + \delta(\beta, R_0) \right\}, (1)$$

where

$$\delta(\beta, R_0) = \gamma \left(\frac{\beta (2^{2R_0} - 1)\mathsf{INR}_2}{2^{2R_0}(1 + \beta\mathsf{SNR}_2) + \beta\mathsf{INR}_2} \right).$$
(2)

In the moderately strong interference regime, defined by

$$\mathsf{SNR}_2 \le \mathsf{INR}_2 \le 2^{2R_0}(1 + \mathsf{SNR}_2) - 1 \stackrel{\triangle}{=} \mathsf{INR}_2^{\dagger},$$
 (3)

the convex hull of the following region

$$\left\{ \left. \left. \left. \left. \left. \begin{array}{l} R_{1} \leq \gamma\left(\frac{\mathsf{SNR}_{1}}{1+\beta\mathsf{INR}_{2}}\right) \\ R_{2} \leq \min\left\{\gamma(\mathsf{SNR}_{2}) + R_{b} + \eta(\alpha, \beta, R_{a}), \\ \gamma(\beta\mathsf{SNR}_{2}) + \gamma\left(\frac{\overline{\beta}\mathsf{INR}_{2}}{1+\beta\mathsf{INR}_{2}}\right) \\ + \zeta(\alpha, \beta, R_{a}) \right\} \\ R_{1} + R_{2} \leq \gamma(\beta\mathsf{SNR}_{2}) + \gamma\left(\frac{\mathsf{SNR}_{1} + \overline{\beta}\mathsf{INR}_{2}}{1+\beta\mathsf{INR}_{2}}\right) \\ + \zeta(\alpha, \beta, R_{a}) \end{array} \right\} \right\}. \quad (4)$$

over all $0 \leq \beta \leq 1$, $R_a + R_b \leq R_0$ is achievable.

In the strong interference regime defined by

$$\mathsf{INR}_2^{\dagger} \le \mathsf{INR}_2 \le (1 + \mathsf{SNR}_1)\mathsf{INR}_2^{\dagger} \stackrel{\triangle}{=} \mathsf{INR}_2^{\ddagger}, \tag{5}$$

the capacity region is given by

$$\left\{ \left. \begin{pmatrix} R_1, R_2 \end{pmatrix} \middle| \begin{array}{rrr} R_1 & \leq & \gamma(\mathsf{SNR}_1) \\ R_2 & \leq & \gamma(\mathsf{SNR}_2) + R_0 \\ R_1 + R_2 & \leq & \gamma(\mathsf{SNR}_1 + \mathsf{INR}_2) \end{array} \right\}.$$
(6)

In the very strong interference regime defined by $INR_2 \ge INR_2^{\ddagger}$, the capacity region is given by

$$\left\{ (R_1, R_2) \left| \begin{array}{c} R_1 \leq \gamma(\mathsf{SNR}_1) \\ R_2 \leq \gamma(\mathsf{SNR}_2) + R_0 \end{array} \right\}.$$
(7)

Different Interference Regimes: Type II

- Weak interference regime: Both common message and private message are needed. Quantize-and-forward private message only.
- Strong and very strong interference regimes: Decode-and-forward the common message only.
- Moderately strong interference regime: Mixture of decode and quantize.

Strong & Very Strong Interference Regimes

Wei Yu and Lei Zhou, University of Toronto. ITA'09

Weak Interference Regime

Wei Yu and Lei Zhou, University of Toronto. ITA'09

Sum Capacity Gain in Weak Interference

- Why is capacity gain limited even as $R_0 \rightarrow \infty$?
 - Common info rate is limited by interference link relay is not useful.
 - Relay helps private info rate by giving Y_2 another look of X_2 .
 - SNR gain is at most 3dB. Sum capacity gain is at most 1/2 bit.

Sum Capacity Bound in Weak Interference

Theorem 4. For the Type II Gaussian Z-interference channel with a relay link of capacity R_0 with $INR_2 \leq SNR_2$, let $C(R_0)$ be its capacity region, and let

$$C_{sum}^{\theta}(R_0) = \max_{(C_1, C_2) \in \mathcal{C}(R_0)} \theta C_1 + (1 - \theta) C_2.$$
(1)

For any $R_0 \ge 0$,

$$C_{sum}^{\theta}(R_0) \le C_{sum}^{\theta}(0) + (1-\theta)\gamma\left(\frac{\mathsf{INR}_2}{1+\mathsf{SNR}_2}\right).$$
 (2)

In particular, the sum capacity of the Type II Gaussian Z-interference channel with a relay link is bounded by the sum capacity without the relay link plus 1/2 bit.

Concluding Remarks

- For a Gaussian Z-interference channels with a relay link, a relay link from clean receiver to interfered receiver is much more efficient:
 - Type I relay asymptotically achieves the cut-set bound.
 - Type II relay increases the sum capacity by at most 1/2 bit.
- Relay link always benefits the clean receiver more!