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Motivation: Mobile Users at the Cell Edge
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• Cellular networks are fundamentally limited by intercell interference.

– However, receivers are often capable of communicating with each
other via independent relay links.

– Question: Can we use relay links for interference mitigation?
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Gaussian Interference Channel with Relay Links
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• Fundamental coding strategies:

– Han-Kobayashi common-private scheme for the interference channel
– Decode-and-forward or quantize-and-forward for the relay channel
– Multi-session conversation for the broadcast channel
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Two Simplest Models
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Figure 1: Type I
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Figure 2: Type II

• Related work:

– Sahin and Erkip (’07): Interference channel with an extra relay node
– Ng, Jindal, Goldsmith, Mitra (’07): Tx and Rx cooperation
– Maric, Dabora, Goldsmith (’08): Interference-forwarding strategy
– Simeone, Somekh, Poor, Shamai (’08): 1-D cellular model with relay
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Interference Channel: Han-Kobayashi Scheme (’81)
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• Basic idea: Allow interference to be partially subtracted.

– U1 and U2 are private messages, W1 and W2 are common messages;
– Achievable region based on intersection of two multiple access regions

• Etkin, Tse, Wang (’07) shows Han-Kobayashi is within 1-bit to capacity.
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Type I Gaussian Z-relay interference Channel
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• How can Y2 help Y1?

• Y2 does not observe X1, but it observes the noise at Y1.

Natural idea: forward the interference to allow subtraction.
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Related Work: A Class of Modulo-Sum Relay Channel
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• Y2 observes a noisy version of the noise Z.

• Quantize-and-forward is capacity achieving (Aleksic, Razaghi, Yu ’07)

What if the noise comes from a codebook?
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Partial Interference Forwarding for Type I Channel

Rate Power
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• Based on Han-Kobayashi common-private splitting:

– β is the portion of the power assigned to the private message U2.

• Achievable rate region is based on the intersection of two multiple access
regions: C1 : (X1,W2) → Y2 with R0, and C2 : (W2, U2) → Y2.
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Two Multiple Access Channel Components
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Intersecting Two Pentagons
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Union of Pentagons
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Figure 3: Weak interference regime.
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Figure 4: Strong interference regime.
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Type I Channel: Achievable Rate Regions

Theorem 1. For the Gaussian Z-interference channel with a digital link
of limited rate R0 from the clean receiver to the interfered receiver, in the
weak interference regime defined by INR2 ≤ SNR2, the following rate region
is achievable:

⋃
0≤β≤1

⎧⎪⎪⎨
⎪⎪⎩(R1, R2)

∣∣∣∣∣∣∣∣
R1 ≤ γ

(
SNR1

1+βINR2

)
R2 ≤ min {γ(SNR2), γ(βSNR2)+

γ
(

(1−β)INR2
1+SNR1+βINR2

)
+ R0

}
⎫⎪⎪⎬
⎪⎪⎭ .

where SNR1 = |h11|2P1
N , SNR2 = |h22|2P2

N , INR2 = |h21|2P2
N and γ(x) =

1
2 log2(1 + x).
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In the strong interference regime, defined by

SNR2 ≤ INR2 ≤max{SNR2, INR∗
2},

where
INR∗

2 = (1 + SNR1)(2−2R0(1 + SNR2) − 1),
the capacity region is given by:⎧⎨

⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2)

R1 + R2 ≤ γ(SNR1 + INR2) + R0

⎫⎬
⎭ .

In the very strong interference regime defined by INR2 ≥ max{SNR2, INR∗
2},

the capacity region is given by:{
(R1, R2)

∣∣∣∣ R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2)

}
.
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Different Interference Regimes: Type I
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• Both common message and private message are needed in the weak
interference regime.

• In the strong and very strong interference regimes, capacity regions are
achieved by an all-common-message scheme (β = 0).

• A strong-interference channel can be converted to the very strong regimes
by a relay link. But weak regime can never be converted to strong regime.
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Strong & Very Strong Interference Regimes
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Weak Interference Regime
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Weak Interference Regime: Discussion
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• For fixed R2, the relay increases R1 by less than R0 bits.

– Asymptotically at high SNR/INR, the increase in R1 approaches R0

– Reminiscent of deterministic relay channel result (Kim and Cover ’06)

• For fixed R1, the relay increases R2 by exactly R0 bits!
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Asymptotic Sum Capacity in Weak Interference

Theorem 2. For the Type I Gaussian Z-interference channel with a relay
link of capacity R0, when INR2 ≤ SNR2 and

min{SNR1,SNR2, INR2} � 1. (1)

the asymptotic sum capacity is given by:

Csum(R0) ≈ Csum(0) + R0 (2)

where the notation f(x) ≈ g(x) is used to denote limN→0 f(x)− g(x) = 0.
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Type II Gaussian Z-relay Interference Channel
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• How can Y1 help Y2?

– Strong interference: Y1 can decode-and-forward common information
– Weak interference: Y1 can quantize-and-forward private information
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Relay Strategy for the Type II Channel

Rate Power
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• Decode-and-forward W2 using Rb.

• Quantization-and-forward U2 using Ra.

– Strategy #1: Quantize h21U2 + Z1, with W2 subtracted.
– Strategy #2: Quantize h21(U2 + W2) + αW2 + Z1. Optimize α!
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Type II Channel: Achievable Rate Regions

Theorem 3. For the Type II Gaussian Z-relay interference channel with
relay rate R0, in the weak interference regime defined by INR2 ≤ SNR2, the
following rate region is achievable

⋃
0≤β≤1

{
(R1, R2)

∣∣∣∣R1 ≤ γ

(
SNR1

1 + βINR2

)
,

R2 ≤ γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ δ(β,R0)

}
, (1)

where

δ(β,R0) = γ

(
β(22R0 − 1)INR2

22R0(1 + βSNR2) + βINR2

)
. (2)

Wei Yu and Lei Zhou, University of Toronto. ITA’09 20



In the moderately strong interference regime, defined by

SNR2 ≤ INR2 ≤ 22R0(1 + SNR2) − 1
�
= INR†

2, (3)

the convex hull of the following region

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ( SNR1
1+βINR2

)
R2 ≤ min {γ(SNR2) + Rb + η(α, β, Ra),

γ(βSNR2) + γ
(

βINR2
1+βINR2

)
+ζ(α, β, Ra)}

R1 + R2 ≤ γ(βSNR2) + γ
(

SNR1+βINR2
1+βINR2

)
+ζ(α, β, Ra)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4)

over all 0 ≤ β ≤ 1, Ra + Rb ≤ R0 is achievable.
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In the strong interference regime defined by

INR†
2 ≤ INR2 ≤ (1 + SNR1)INR†

2

�
= INR‡

2, (5)

the capacity region is given by⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2) + R0

R1 + R2 ≤ γ(SNR1 + INR2)

⎫⎬
⎭ . (6)

In the very strong interference regime defined by INR2 ≥ INR‡
2, the capacity

region is given by {
(R1, R2)

∣∣∣∣ R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2) + R0

}
. (7)
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Different Interference Regimes: Type II
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• Weak interference regime: Both common message and private message
are needed. Quantize-and-forward private message only.

• Strong and very strong interference regimes: Decode-and-forward the
common message only.

• Moderately strong interference regime: Mixture of decode and quantize.
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Strong & Very Strong Interference Regimes
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Weak Interference Regime
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Sum Capacity Gain in Weak Interference
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• Why is capacity gain limited even as R0 → ∞?

– Common info rate is limited by interference link – relay is not useful.
– Relay helps private info rate by giving Y2 another look of X2.
– SNR gain is at most 3dB. Sum capacity gain is at most 1/2 bit.
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Sum Capacity Bound in Weak Interference

Theorem 4. For the Type II Gaussian Z-interference channel with a relay
link of capacity R0 with INR2 ≤ SNR2, let C(R0) be its capacity region,
and let

Cθ
sum(R0) = max

(C1,C2)∈C(R0)
θC1 + (1 − θ)C2. (1)

For any R0 ≥ 0,

Cθ
sum(R0) ≤ Cθ

sum(0) + (1 − θ)γ
(

INR2

1 + SNR2

)
. (2)

In particular, the sum capacity of the Type II Gaussian Z-interference
channel with a relay link is bounded by the sum capacity without the relay
link plus 1/2 bit.
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Concluding Remarks
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• For a Gaussian Z-interference channels with a relay link, a relay link from
clean receiver to interfered receiver is much more efficient:

– Type I relay asymptotically achieves the cut-set bound.
– Type II relay increases the sum capacity by at most 1/2 bit.

• Relay link always benefits the clean receiver more!
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