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Abstract—The capacity region of Gaussian interference chan-
nel in the weak interference regime is an open problem. Recently,
Etkin, Tse and Wang derived an outer bound for the two-user
Gaussian interference channel and proved that a simple Han-
Kobayashi signaling scheme can achieve within one bit of the
capacity region for all values of channel parameters. In this paper,
we extend their result to the K-user symmetric cyclic Gaussian
interference channel. Our result shows that both the Etkin, Tse
and Wang’s upper bound and their one-bit achievability result on
the symmetric rate continue to hold for the symmetric rate of the
K-user symmetric cyclic channel using the same Han-Kobayashi
strategy.

I. INTRODUCTION

An interference channel is a communication network con-
sisted of several mutually interfering transmitter-receiver pairs.
Each transmitter communicates with its intended receiver
while causing interference to other receivers. The interference
channel is a useful model for many practical systems, such
as the wireless network. However, the capacity region of the
interference channel is not known in most cases, even for the
two-user Gaussian case.

The largest known achievable rate region for the two-
user interference channel is derived by Han and Kobayashi
[1] using a fairly complex characterization involving both
common-private power splitting and time sharing techniques.
Recently, Chong et. al. [2] obtained the same rate region
in a simpler form. The capacity region for the Gaussian
interference channel in the strong interference can be shown
to be a rectangular or a pentagon region [1], [3], [4]. However,
the capacity region in the weak interference remains open.

The Han-Kobayashi scheme has recently been shown to be
sum capacity achieving in a very weak interference regime
[5]–[7] and to be within one bit of the capacity region in
general [8]. In particular, Etkin, Tse and Wang showed in [8]
that for a two-user Gaussian interference channel, by keeping
the interference-to-noise-ratio (INR) of the private message to
be as close to 1 as possible in the Han-Kobayashi scheme,
one can achieve within one bit of the capacity region. They
also found a new outer bound for the capacity region using a
genie-aided technique.

In practical systems, an interference channel can have
more than two transmitter-receiver pairs. However, the gen-
eralization of Etkin, Tse and Wang’s result to interference
channels with more than two users has proved difficult. First, it
appears that Han-Kobayashi superposition coding is no longer
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Fig. 1. Cyclic Gaussian interference channel

adequate. Interference alignment types of coding scheme [9]
[10] need to be used. Second, even within the Han-Kobayashi
framework, when more than two receivers are involved, mul-
tiple common messages at each transmitter may be needed,
making the optimization of the resulting rate region expression
difficult. Recently, Bresler, Parekh and Tse studied the many-
to-one and one-to-many interference channels in [10], where
a lattice coding technique is used to manage the receiver side
interference.

In this paper, we focus on a simpler model in which each
receiver suffers only one interference from its neighboring
transmitter, thereby avoiding the aforementioned issues. We
show that there exists a specific subclass of symmetric cyclic
K-user interference channels for which the technique of [8]
and [11] can be easily used. We extend the one-bit result on the
symmetric rate of the two-user Gaussian interference channel
in [8] and [11] to the K-user symmetric cyclic scenario. We
show that the achievable symmetric rate in this case is also
within one bit of the symmetric capacity.

II. CYCLIC GAUSSIAN INTERFERENCE CHANNEL AND ITS

ACHIEVABLE SYMMETRIC RATE

The K-user cyclic Gaussian interference channel (as de-
picted in Fig. 1) has K transmitter-receiver pairs. Each trans-
mitter tries to communicate with its intended receiver while
causing interference to only one neighboring receiver. Each
receiver receives a signal intended for it and an interference
signal from the neighboring sender plus an additive white
Gaussian noise (AWGN). As shown in Fig. 1, X1, X2, · · ·XK



and Y1, Y2, · · ·YK are the input and output signals, respetively,
and Zi ∼ CN (0, σ2

i ) is the Gaussian noise at receiver i. The
input-output model can be written as

Y1 = h11X1 + hK1XK + Z1

Y2 = h22X2 + h12X1 + Z2

...

YK = hKKXK + hK−1,KXK−1 + ZK (1)

where hij is the channel gain from transmitter i to receiver j.
In this paper, we only deal with the symmetric case, where

all the direct links from transmitters to receivers have the same
gain of

√
gd and all the cross links

√
gc, i.e.,

h11 = h22 = · · · = hKK =
√
gd

h12 = h23 = · · · = hK1 =
√
gc.

In addition, we focus on the weak interference regime, where
gc ≤ gd. Further, we assume that all the noises at the receiver
side have the same power level σ2, and all the input signals
are independent with the same power constraint P , i.e.,

E{|Xi|2} ≤ P, 1 ≤ i ≤ K. (2)

For convenience, we define

SNR =
gdP

σ2
; INR =

gcP

σ2
. (3)

The symmetric capacity of the K-user interference channel
is defined as

Csym =

{
maximize min{R1, R2, · · · , RK}
subject to (R1, R2, · · · , RK) ∈ R (4)

where R is the capacity region of the K-user interference
channel. For the symmetric interference channel, Csym =
1
KCsum, where Csum is the sum capacity of the K-user
symmetric interference channel. Therefore, for the symmet-
ric interference channel, the symmetric capacity problem is
equivalent to the sum capacity problem.

The largest known achievable rate region for the two-
user interference channel is derived using the Han-Kobayashi
common-private power splitting scheme. For the K-user in-
terference channel, the Han-Kobayashi scheme can be easily
generalized as follows: each input signal Xi is split into two
parts (as shown in Fig. 1): Wi and Ui, where Wi is the
common message that can be decoded by all the receivers
who receive Wi, and Ui represents the private message that
is decodeable only at the intended receiver. The common
message and the private message follow the power constraint
Pw + Pu = P .

Etkin, Tse and Wang proved in [8], [11] that for a two-
user Gaussian weak interference channel, by simply keeping
the interference power of the private message at the interfered
receiver to be as close to the noise power as possible, i.e.,
gcPu/σ

2 = min(1, INR), one can achieve within one bit of the
symmetric capacity for all ranges of SNR and INR. Inspired
by this insight, we extend their one-bit result to the symmetric
capacity of the K-user cyclic channel.

Theorem 1: For the K-user symmetric cyclic Gaussian
weak interference channel, when INR ≥ 1, the following rate
is achievable

Rsym = min

{
log(1 + INR+

SNR

INR
)− 1,

1

2
log(1 + INR+ SNR) +

1

2
log(2 +

SNR

INR
)− 1

}
(5)

using a Han-Kobayashi scheme with private message power
set to Pu = σ2/gc. When INR < 1, using the same Han-
Kobayashi scheme with Pu = P achieves the following rate:

Rsym = log

(
1 +

SNR

1+ INR

)
. (6)

Proof: This result is a natural extension of Han and
Kobayashi’s strategy where the achievable rate region is char-
acterized by intersecting the the capacity regions of multiple
access channels (MAC) involving common and private mes-
sages. For example, the private and common rates at Y1 is char-
acterized by R(U1,W1,WK). In general, R(Ui,Wi,Wi−1)
denotes the capacity region of the multiple access channel
with inputs (Ui,Wi,Wi−1) and output Yi.

The capacity region of the ith multiple access channel
R(Ui,Wi,Wi−1) can be written as:

Si ≤ I(Yi;Ui|Wi,Wi−1)

Ti ≤ I(Yi;Wi|Ui,Wi−1)

Ti−1 ≤ I(Yi;Wi−1|Ui,Wi)

Si + Ti ≤ I(Yi;UiWi|Wi−1) (7)

Si + Ti−1 ≤ I(Yi;UiWi−1|Wi)

Ti + Ti−1 ≤ I(Yi;WiWi−1|Ui)

Si + Ti + Ti−1 ≤ I(Yi;UiWiWi−1).

where i goes from 1 to K (when i = 1, i−1 ≡ K), Si and Ti

are the achievable rates of private message Ui and common
message Wi respectively.

At the receiver side, common messages (Wi,Wi−1) are
decoded first with Ui treated as noise. Then, Wi and Wi−1

are subtracted, and the private message Ui is decoded next.
As a result, the achievable rate for the private message U i is
given by

Si = I(Yi;Ui|Wi,Wi−1).

Substituting the private message rate Si into the capacity
region R(Ui,Wi,Wi−1) in (7), we have

Ti ≤ I(Yi;Wi|Wi−1)

Ti−1 ≤ I(Yi;Wi−1|Wi) (8)

Ti + Ti−1 ≤ I(Yi;WiWi−1).

Assume that same common-private power splitting ratio is
adopted at different transmitters, i.e., both U i and Wi have
the same power for all the transmitters. Then, by symmetry,



the mutual information expressions in (7) do not depend on i.
Now define

Ru = I(Yi;Ui|Wi,Wi−1)

Rwd = I(Yi;Wi|Wi−1)

Rwc = I(Yi;Wi−1|Wi)

Rmac = I(Yi;WiWi−1)

for i = 1, 2, · · · ,K . By the chain rule of mutual information
and the fact that gc ≤ gd, we have

Rwc ≤ Rwd ≤ Rmac. (9)

Using the fact that Rwc ≤ Rwd, the achievable rate region of
the common messages in (8) can be further simplified as:

Ti ≤ Rwc

Ti + Ti−1 ≤ Rmac (10)

where i = 1, 2, · · · ,K .
Inspecting the above formula, we conclude that when

Rmac ≥ 2Rwc,

Rsum ≤ KRu +KRwc (11)

with equality achieved by Ti = Rwc, i = 1, 2, · · · ,K . When
2Rwc ≥ Rmac ≥ Rwc,

Rsum ≤ KRu +
K

2
Rmac (12)

with equality achieved by Ti = Rmac/2, i = 1, 2, · · · ,K .
Combining (11) and (12), we obtain the following achievable
sum rate for the K-user symmetric cyclic Gaussian interfer-
ence channel:

Rsum = KRu +min

{
KRwc,

K

2
Rmac

}
. (13)

Now, when INR ≥ 1, we set the private message power
to be the same as the noise power at the receiver, i.e. set
Pu = σ2/gc. In this case, we have

Ru = log

(
1 +

SNR

2INR

)

Rwc = log

(
1 +

INR(INR− 1)

SNR+ 2INR

)

Rmac = log

(
1 +

(SNR + INR)(INR− 1)

SNR+ 2INR

)
.

When INR < 1, we set Pu = P and Pw = 0 to obtain

Ru = log

(
1 +

SNR

1 + INR

)

Rwc = Rmac = 0

The proof of Theorem 1 is completed by substituting the
above Ru, Rwc and Rmac into (13) and noting that Rsym =
Rsum/K .

III. OUTER BOUNDS FOR THE SYMMETRIC CAPACITY

Theorem 2: For the K-user symmetric cyclic Gaussian
weak interference channel shown in Fig. 1, the symmetric
capacity is upper bounded by

Rub = min

{
log(1 + INR+

SNR

1 + INR
),

1

2
log(1 + SNR) +

1

2
log(1 +

SNR

1 + INR
)

}
. (14)

In the weak interference regime of INR ≤ SNR, we have

Rub −Rsym < 1. (15)

Note: the upper bound in (14) is the same as the upper bound
derived for the two-user symmetric Gaussian interference
channel in [8] and [11].

Proof: For a block of length n, from Fano’s inequality,
we have

n(R1 +R2)

≤ I(xn
1 ; y

n
1 ) + I(xn

2 ; y
n
2 ) + nεn

≤ I(xn
1 ; y

n
1 x

n
K) + I(xn

2 ; y
n
2 ) + nεn

(a)
= I(xn

1 ; y
n
1 |xn

K) + I(xn
2 ; y

n
2 ) + nεn

= h(yn2 )− h(yn2 |xn
2 ) + h(yn1 |xn

K)− h(yn1 |xn
1x

n
K) + nεn

= h(yn2 )− h(zn1 ) + h(
√
gdx

n
1 + zn1 )

−h(
√
gcx

n
1 + zn2 ) + nεn

(b)

≤ n log(1 + SNR) + n log(1 +
SNR

1+ INR
) + nεn

= nRub1 + nεn

where xn
k and ynk are the input sequence and the output

sequence of user k and the term εn diminishes when the block
length n goes to infinity. Note that, equality (a) comes from
the fact that xn

1 and xn
K are independent. The last inequality

(b) comes form [8].
Proceeding in the same way for the other users, we obtain

the following inequalities:

R1 +R2 ≤ Rub1

R2 +R3 ≤ Rub1

...

RK +R1 ≤ Rub1

Adding up all the inequalities above, we obtain an upper bound
for the sum capacity:

Csum ≤ K

2
Rub1

Therefore,

Csym =
1

K
Csum

≤ 1

2
log(1 + SNR) +

1

2
log

(
1 +

SNR

1 + INR

)
(16)

gives an upper bound for the symmetric capacity.
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Fig. 2. Genie-aided cyclic Gaussian interference channel

To obtain the other upper bound for the symmetric capacity,
we define the following genies:

sn1 =
√
gcx

n
1 + zn2

sn2 =
√
gcx

n
2 + zn3

...

snK =
√
gcx

n
K + zn1

Consider the genie-aided interference channel as shown in
in Fig. 2. Each genie snk is provided at receiver k. This extra
piece of information at the receiver side guarantees that the
sum rate upper bound of this genie-aided channel is also the
an upper bound of the original channel.

Again, starting from the Fano’s inequality,

n(R1 +R2 + · · ·+RK)

≤ I(xn
1 ; y

n
1 ) + I(xn

2 ; y
n
2 ) + · · ·+ I(xn

K ; ynK) + nεn

≤ I(xn
1 ; y

n
1 s

n
1 ) + I(xn

2 ; y
n
2 s

n
2 ) + · · ·+ I(xn

K ; ynKsnK) + nεn

= I(xn
1 ; s

n
1 ) + I(xn

1 ; y
n
1 |sn1 ) + I(xn

2 ; s
n
2 ) + I(xn

2 ; y
n
2 |sn2 )

+ · · ·+ I(xn
K ; snK) + I(xn

K ; ynK |snK) + nεn

= h(sn1 )− h(sn1 |xn
1 ) + h(yn1 |sn1 )− h(yn1 |xn

1 s
n
1 ) +

h(sn2 )− h(sn2 |xn
2 ) + h(yn2 |sn2 )− h(yn2 |xn

2 s
n
2 ) +

...

h(snK)− h(snK |xn
K) + h(ynK |snK)− h(ynK |xn

KsnK) + nεn

= h(sn1 )− h(zn2 ) + h(yn1 |sn1 )− h(snK) +

h(sn2 )− h(zn3 ) + h(yn2 |sn2 )− h(sn1 ) +

...

h(snK)− h(zn1 ) + h(ynK |snK)− h(snK−1) + nεn

(a)

≤
n∑

i=1

K∑
k=1

{h(yki|ski)− h(zki)} + nεn

(b)

≤ nK log

(
1 + SNR+

SNR

1+ INR

)
+ nεn

= nKRub2 + nεn

where inequality (a) comes from the following facts:

h(znk ) =

n∑
i=1

h(zki)

h(ynk |snk ) ≤
n∑

i=1

h(yki|snk ) ≤
n∑

i=1

h(yki|ski)

and (b) comes directly from [8, Theorem 1].
As n goes to infinity, εn vanishes. As a result, the symmetric

capacity is upper bounded by

Csym ≤ Rub2 = log

(
1+ SNR+

SNR

1+ INR

)
. (17)

Finally, the symmetric upper bound is obtained by combining
(16) and (17).

As we can see, both the achievable symmetric rate in
Theorem 1 and the upper bound in Theorem 2 are exactly the
same as those obtained for the two-user interference channel
in [8] and [11]. As a result, the one-bit result continues to
hold.

IV. CONCLUSION

In this paper, we investigate the achievable symmetric rate
and the capacity outer bound for the K-user symmetric cyclic
Gaussian interference channel. Our analysis shows that by
using the same signaling strategy as proposed by Etkin, Tse
and Wang [8] [11] for the two-user Gaussian interference
channel, the symmetric capacity of the K-user symmetric
cyclic interference channel can be achieved within one bit.
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