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We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT) system in the presence of
both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber
lines (DSL). One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse
occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC) codes and bit-interleaved coded
modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree
distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating
the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is
significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS) code. The proposed
method has a lower implementation complexity than the concatenated coding approach.
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1. INTRODUCTION

The design of error control codes for discrete multitone
(DMT) systems is of great interest for applications such as
digital subscriber lines (DSL) [1–6]. In a DMT system, dif-
ferent constellations may be used in different tones and non-
binary high-order modulation formats are typically used.
Current asymmetric DSL (ADSL) standards use a trellis-
coded modulation scheme concatenated with an outer Reed-
Solomon (RS) code. The inner trellis code provides a coding
gain for an additive white Gaussian noise (AWGN) channel,
and the outer RS code offers additional noise immunity, es-
pecially against impulse noise.

This paper is motivated by the phenomenal success of
turbo and low-density parity-check (LDPC) codes in the past
decade. It is now possible to design codes that perform within
a fraction of a decibel (dB) from the Shannon limit in an
additive white Gaussian noise channel. However, the use of
turbo codes and LDPC codes in DMT systems is not yet
widespread. This is in part due to the fact that the effect
of impulse noise on turbo or LDPC codes has not yet been
studied in depth. Impulse noise is one of the main channel
impairments in DSL. The main focus of this paper is the de-
sign of LDPC codes for a DMT system in an impulse-noise
environment.

In their original forms, both turbo and LDPC codes are
binary codes. In the low signal-to-noise-ratio (SNR) regime,
where binary modulation is spectrally efficient, binary turbo
codes and binary low-density parity-check (LDPC) codes can
effectively approach the capacity of many channels (e.g., [7–
11]). A DMT system, however, often includes higher-order
constellations that are not necessarily binary. This neces-
sitates the use of nonbinary alphabets or the use of mul-
tilevel coding techniques. Theoretically, multilevel coding
[12], when combined with capacity-achieving binary codes,
is capable of achieving the capacity of higher-order modula-
tion. In practice, schemes such as bit-interleaved coded mod-
ulation (BICM) [13] can offer a performance very close to
the capacity of higher-order modulation.

The use of multilevel coding for DMT systems has been
studied by various authors for DSL and power-line com-
munication channels [2, 4–6]. For example, in [5] a regu-
lar high-rate LDPC code is used for error correction in a
DSL transmission system, achieving a coding gain of 6 dB
at a symbol error rate (SER) of 10−7. In [2], turbo codes
have been used for ADSL and a coding gain of 6 dB at an
SER of 10−6 (equivalent to approximately 6.8 dB at an SER
of 10−7) is reported. In [6], the idea of using LDPC codes to-
gether with coded modulation is used, although the issue of
code optimization is not addressed. In [4], irregular LDPC
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codes—optimized for Gaussian channels—are used for data
transmission over power-line channels and an average cod-
ing gain of about 7.5 dB at an SER of 10−7 is achieved. These
coding gains can be compared with a 5.5 dB gain which can
be achieved by a 512-state trellis code on an AWGN channel
at an SER of 10−7 [14].

The above-mentioned systems all assume an additive
Gaussian noise model. The effect of impulsive noise is ei-
ther ignored, or not considered in the code design. How-
ever, impulse noise is a major channel impairment in digital
subscriber lines. A large impulse often causes an entire DMT
symbol to be corrupted [15] which can seriously deteriorate
overall system performance. Current DSL standards rely on
extensive interleaving and an outer RS code to provide im-
pulse protection. Much work has been done (e.g., see [15–20]
and the references therein) on the characteristics of impulse
noise and the use of RS codes for impulse protection.

One way to combat the effect of impulse noise is the idea
of impulse detection and erasure. As an impulse is typically
a large signal that occurs for an extended period of time and
across a large number of frequency tones, reliable detection
of impulses is often possible. When an impulse is detected, an
erasure can then be declared. The declaration of erasure pro-
vides side information to the decoder of the error-correcting
code and effectively increases its error-correcting capabil-
ity. For example, in a system with an RS code, the error-
correcting capability can be increased by a factor of two when
erasures are declared [18, 19]. Under the erasure model, the
impulse channel is essentially a concatenation of an additive
noise channel and an erasure channel.

LDPC codes have excellent performance on both additive
noise channels (e.g., AWGN) and the binary erasure channel
(BEC) alone. However, the design and performance of these
codes over channels with both additive noise and erasures
have not—to the best of our knowledge—been studied. This
motivates us to study the design and the analysis of LDPC
codes over a channel model seen in DMT systems in impul-
sive environments.

In this study, we rigorously analyze an impulse-noise
channel model and design an irregular LDPC code specifi-
cally for the impulse noise channel. Our main contribution
is a design methodology that enables the design of capacity-
approaching LDPC codes for channels with both additive
Gaussian noise and erasures. Such an optimized LDPC code,
when combined with bit-interleaved coded modulation, out-
performs both conventional systems with RS codes and sys-
tems with LDPC codes optimized for AWGN channel alone
in a DMT system. In fact, such a design can effectively handle
both the additive Gaussian noise and the erasures introduced
by the DMT channel, thus eliminating the need for an outer
code. This results in hardware—and software—complexity
savings as well as higher code rates.

The rest of the paper is organized as follows. In Section 2,
the impulse-noise channel model is introduced. In Section 3,
a review of multilevel coding and density evolution analy-
sis for LDPC codes is provided. In Section 4, a coding struc-
ture based on BICM and LDPC coding is established; the
characteristics of the effective “bit-channel” are studied; and

+x

n

ε

1− ε

E

x + n

Figure 1: Channel model: the concatenation of an AWGN channel
with an erasure channel.

an LDPC code optimization technique is described. The
optimization technique is capable of finding LDPC codes
that perform close to the capacity of the effective “bit-
channel.” Section 5 provides simulation results and compari-
son with existing solutions. Finally, conclusions are drawn in
Section 6.

2. CHANNEL MODEL AND PROBLEM STATEMENT

Throughout this work we assume that the DMT symbols that
are corrupted by impulsive noise are known to the receiver,
and can therefore be replaced by erasures. In [19] a process
called erasing is used to detect the impulse noise and to in-
dicate the location of the potentially corrupted data in an
RS block. This way, the error-correcting capability of the RS
code is increased by a factor of two. There are many different
methods for detecting the impulse noise at the receiver, for
example, [18–20]. The detection of impulse noise is usually
based on the observation that when a noise burst occurs, the
squared distance between several of the received signals in a
DMT symbol and the constellation points exceeds a thresh-
old. Therefore, using square distance-based methods, the im-
pulsive noise can be replaced with an erasure in the channel.

Figure 1 shows the channel model that we consider in this
study. The input to this channel, x, is a point selected from
a constellation A ⊂ C of size 2l. The output, y ∈ C ∪ {E},
of this channel is either erasure E with probability ε or x + n
with probability 1− ε, where n is assumed to be a sample of
a complex zero-mean circularly-symmetric white Gaussian
noise with variance 2σ2. The erasure output of this channel
model reflects the effect of the impulse noise and the additive
noise reflects the effect of the AWGN channel.

Erasures can be naturally incorporated in the message-
passing decoding of LDPC codes (see Section 3.2). However,
it is not clear that a code optimized for an AWGN channel
would also remain optimized for a channel with both AWGN
and erasures. One of the objectives of this paper is to design
LDPC codes specifically for such channels.

Since in this work we use multilevel coding, the trans-
mission of the signal will be modelled as the transmission of
the bits of the binary labels used for labelling different con-
stellation points. Thus, we are most interested in the charac-
teristics of the channels seen by the label bits. We call these
channels bit-channels, and will study them after a brief re-
view of multilevel coding and a description of our proposed
system.
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3. BACKGROUND

In this section we briefly review the idea of multilevel coding,
the structure of LDPC codes, and their analysis techniques.

3.1. Multilevel coding

The main idea of multilevel coding [12] is to label each point
of a nonbinary constellation A = {a0, a1, . . . , aN−1} of size
N = 2l with a binary address b = (b0, b1, . . . , bl−1) and use
binary codes to protect each address bit bi by an individual
binary code C i at level i [21].

Let A and Y represent the random variables correspond-
ing to the transmitted and received signals, respectively. Also
consider (b0, b1, . . . , bl−1) as the vector of random variables
corresponding to the address bits. Since a one-to-one map-
ping between the address vector and the constellation points
exists, we have

I(Y ;A) = I
(
Y ; b0, b1, . . . , bl−1

)
(1)

which, using the mutual information chain rule, can be writ-
ten as

I(Y ;A) = I
(
Y ; b0

)
+ I
(
Y ; b1 | b0

)

+ · · · + I
(
Y ; bl−1 | b0, b1, . . . , bl−2

)
.

(2)

This decomposition of the mutual information implies that
transmission of the signal over the physical channel can be
thought of as parallel transmission of individual bits. Due to
the labelling scheme, each address bit sees an effective chan-
nel (bit-channel) whose capacity can be different from the
capacity of other bit-channels. An individual code should be
used for each bit-channel, and it is known that if each code
achieves the capacity of its bit-channel, the total capacity of
the channel is achieved [21]. A complete study of multilevel
coding and the structure of the encoder and decoder can be
found in [22, 23].

One drawback of capacity-approaching systems using
multilevel coding is that they require different codes with dif-
ferent rates for each bit-channel. This problem can be solved
using BICM. In BICM, after using gray labelling, the address
bits of the labels are interleaved. Hence, instead of using in-
dividual codes at different levels, a single code can be used
for all the address bits. BICM can approach the channel ca-
pacity very closely [13], but, unlike multilevel coding, can-
not achieve capacity. What makes BICM attractive is its lower
software/hardware complexity at the expense of very minor
performance loss.

3.2. LDPC codes

An LDPC code is a linear block code with a sparse parity-
check matrix that can be represented by a bipartite graph [24,
25]. Figure 2 shows one such graphical representation.

A variable node vj (represented by a circle) is a binary
variable from the alphabet {0, 1} and a check node ci (rep-
resented by a square) is an even parity constraint on its
neighboring variable nodes, so that in a valid codeword we

c1 c2 c3 c4

ν1 ν2 ν3 ν4 ν5 ν6 ν7

Figure 2: A bipartite graph representing a parity-check code.

have, for all the checks ci,

⊕

j:vj∈n(ci)

vj = 0, (3)

where n(ci) is the set of all the neighbors of ci and ⊕ repre-
sents modulo-two sum.

LDPC codes, depending on their structure, are classified
as being regular or irregular. In a regular code, all variable
nodes are of a fixed degree and all the check nodes are of
another fixed degree. Irregular LDPC codes can significantly
outperform regular codes [26]. By carefully designing the ir-
regularity in the graph, codes which perform very close to the
capacity can be found [9, 11, 26, 27].

An ensemble of irregular codes can be defined by its vari-
able and check-node-degree distributions. The degree dis-
tribution at the variable/check side represents the percent-
age of edges incident on variable/check nodes with different
degrees. As the block length of a randomly chosen code ap-
proaches infinity, the performance of the code depends only
on its degree distributions [9]; therefore, code design prob-
lem translates to the problem of finding good variable and
check-degree distributions. In practice, when a finite-length
code is used, the larger the block length, the closer the perfor-
mance of the code to the predicted asymptotic behavior. In
the remainder of this paper, we refer to variable-node-degree
distribution as λ = {λ2, λ3, . . . , λdv}, where λi is the fraction
of edges incident on variable nodes of degree i and dv is the
maximum variable-node degree of the code. Similarly we use
ρ = {ρ2, ρ3, . . . , ρdc} for the check-degree distribution.

The decoding of LDPC codes is done by iterative
message-passing algorithms. Different types of messages ex-
ist, but log-likelihood-ratio (LLR) messages are the most
common ones. The LLR for a bit b is defined as

LLR(b) = ln
Pr(b = 0)
Pr(b = 1)

. (4)

Notice that in the case of an erasure, LLR(b) = 0.
Many different message-passing algorithms exist [9, 25],

among which the sum-product algorithm is the most ac-
curate one [25]. Assuming that LLR messages are used,
and following the notation of [25], the update rules of the
sum-product algorithm at a check node c and a neighboring
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Figure 3: The block diagram of the encoder of the proposed system.
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Figure 4: The block diagram of the decoder of the proposed system.

variable node v are

μc→v = 2tanh−1

(
∏

h∈n(c)−{v}
tanh

μh→c

2

)

,

μv→c = μch→v +
∑

y∈n(v)−{c}
μy→v,

(5)

where μh→c represents a message from a variable node h to the
check node c, μy→v represents a message from a check node
y to the variable node v, and μch→v is the channel message to
the variable node v. In this paper, we assume that our LDPC
decoder uses the sum-product algorithm.

Erasure LLR messages are zero and are processed like
other messages in the decoder. Hence, they are naturally in-
corporated in the decoding, requiring no modification to the
decoder.

3.3. LDPC code analysis and design

The analysis of the decoder’s performance can be done by
density evolution [10] or discrete density evolution [27]. The
main idea of the analysis is to track the evolution of the
probability density function (PDF) of the messages in the
decoder. The inputs to this algorithm are the code variable-
node- and check-node-degree distributions, the update rules
at the variable and check nodes, and the PDF of LLR mes-
sages from the channel. The output of the algorithm is the
PDF of LLR messages after each iteration.

One of the pillars of density evolution analysis of LDPC
codes for binary transmission is the assumption that the all-
zero codeword (all-{+1} channel-word) is transmitted. This
assumption is valid because the performance of the code is
independent of the transmitted codeword [10]. Therefore,
under this assumption we can associate an error rate to a
message PDF, that is, the negative tail of the PDF. Thus, one
can investigate whether or not the error rate of messages (the

negative tail of the LLR density) approaches zero as the num-
ber of iterations goes to infinity.

For higher-order modulation, however, assuming that
the all-zero codeword is transmitted is not valid. This is be-
cause, different constellation points might have different er-
ror rates. In Section 4.3 we will show how this problem can be
tackled and an LLR density whose negative tail corresponds
to the message error rate can be found, without the need for
an all-zero codeword assumption.

Using density evolution as a probe, one can search for
variable-node- and check-node-degree distributions that
provide performance approaching capacity [27]. The inputs
to this optimization program are the message update rules
of the decoder at the variable and check nodes as well as the
channel LLR PDF and the output is the optimized degree-
distribution.

There are many papers on such degree optimizations for
various channel models. Probably the one most related to our
study is [28], where component LDPC codes are designed in
a multilevel coding structure. Our work is different in two
ways: first, we use BICM and hence we need to design one
single LDPC code; second, we consider the effect of impulse
noise. Using one LDPC code has many practical benefits, for
example, for the same delay, it allows for a longer block-
length (hence better performance); it also reduces hardware
and software complexity.

4. SYSTEM STRUCTURE

Figures 3 and 4 show the block diagrams of the proposed
system at the transmitter and the receiver, respectively. At
the transmitter, the constellation mapper uses l bits from the
output of LDPC encoder to select a point from the constella-
tion for each subchannel of the DMT system. After assigning
data to all subchannels, this complex vector is mapped to a
DMT symbol using an inverse Fourier transform (IDFT).

At the receiver, a DMT symbol is first converted to a
complex vector using the discrete Fourier transform (DFT).
Then, for each tone, l LLR values associated with the l trans-
mitted bits are computed and buffered. Once all LLR values
are ready, they are passed to the LDPC decoder.

Here, we assume that the length of the LDPC code is an
integer multiple of the length of the DMT symbols. Even
if we relax this assumption (due to the time-varying num-
ber of bits loaded into the DMT symbols), we can simply
put as many DMT symbols as possible in the LDPC struc-
ture and fill its remaining portion with zeros. Typically, the
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length of an LDPC codeword is much longer than the length
of a DMT symbol. Thus, filling the remaining portion of the
LDPC code with zeros has no significant effect on the system
performance.

4.1. Channel capacity

The physical channel model for a DMT system in an im-
pulse environment is as shown in Figure 1. In this section,
we consider instead the transmission of the bits of the con-
stellation labels and study the resulting bit-channel. Since the
binary LDPC decoder receives its initial LLRs from these bit-
channels, we first investigate the distribution of the LLRs of
the bit-channels. We then characterize the bit-channel capac-
ity, which provides a metric with which the actual achieved
code rates may be compared.

As shown in [29], the mutual information between the
input and the output of an AWGN channel, when the input
signals are equally likely chosen from a constellation A of size
2l, is

CA = log2

(
2l
)

− 1
2l

2l−1∑

k=0

E

{

log2

2l−1∑

i=0

exp

[

−
∣
∣ak + w − ai

∣
∣2 − |w|2

2σ2

]}

,

(6)

where ak is the kth point on the constellation, and w repre-
sents samples of a complex Gaussian noise with variance 2σ2.

Our channel model is a concatenation of such an AWGN
channel with an erasure channel whose erasure rate is ε.
Therefore the channel capacity is

CA,ε = (1− ε)CA. (7)

This capacity should be normalized per bit to reflect the
average capacity of bit-channels. Thus, (7) results in bit-
channels whose average capacity Cb is

Cb = 1
l

(1− ε)CA. (8)

In this work we use BICM. Although, BICM cannot
achieve the capacity (8), it can approach the capacity very
closely, as shown in [13]. At high SNRs the capacities of
BICM and multilevel coding are almost equal.

Figure 5 shows the plot of Cb versus SNR. It also shows
the capacity of BICM. It can be seen that for SNRs exceeding
6 dB, the gap from the capacity of BICM to the capacity of
multilevel coding is minor. It should be mentioned that here
SNR is defined as 10 log10(Es/σ2), where Es is the average en-
ergy of constellation per real dimension and 2σ2 is the vari-
ance of the complex Gaussian noise. The erasure rate of the
channel is assumed to be 0.06, hence at high SNR the value
of Cb approaches 1− ε = 0.94.

4.2. Density of bit-channel LLRs

While an erasure in the actual channel translates to an era-
sure in all bit-channels, a Gaussian noise on the actual chan-
nel does not necessarily translate to Gaussian noise on the
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Figure 5: The average bit-capacity for a gray-labelled 16-QAM at
different SNRs with an erasure rate of ε = 0.06.

bit-channels. The effective noise of each bit-channel highly
depends on the constellation labelling.

We can easily find the LLRs for different bit-channels.
The LLR value for bi, can be computed as

LLR
(
bi
) = ln

Pr
(
bi = 0 | y)

Pr
(
bi = 1 | y)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if y = E,

ln

∑
aj∈A (bi=0) e

−‖aj−y‖2/2σ2

∑
aj∈A (bi=1) e

−‖aj−y‖2/2σ2 otherwise,

(9)

where y is the received signal, aj represents a point of the
transmitted constellation, 2σ2 is the Gaussian noise variance,
and A (bi = 0) represents the subconstellation of A with the
address bit bi equal to zero.

In BICM, since the bits are interleaved, the density of
LLRs that the LDPC code sees is a mixture of LLR densities
for different bit-channels. For a gray-labelled 16-QAM con-
stellation this density is shown in Figure 6. In this figure, the
erasure probability is 0.06 and the Gaussian channel SNR is
10 dB. Notice that since Pr (y = E) = ε, the density of LLRs
has an impulse of weight ε at zero. Another interesting obser-
vation is that the density is not symmetric with respect to the
vertical axis. To see why, consider the gray-labelled 16-QAM
constellation of Figure 7 and notice that the value of LLR(b0)
can grow unboundedly large (for received signals far to the
right or to the left), but approaches its minimum for the re-
ceived signals close to the vertical axis. Therefore, the LLR
PDF of b0 (and as a result the mixture of LLR densities) is
not symmetric with respect to the vertical axis.

4.3. All-zero codeword assumption

For the design and analysis of binary LDPC codes over sym-
metric binary-input channels, it is usually assumed that the
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Figure 7: A gray-labelled 16-QAM constellation (b3b2b1b0).

all-zero codeword (equivalent to all-{+1} channel-word) is
transmitted. In fact, the density of LLR messages associated
with the all-{+1} channel-word, is essential for the design
procedures which are based on density evolution.

In our case, however, assuming that the all-zero code-
word is transmitted is not valid because the points of the
constellation are not all equivalent. To tackle this problem,
we first notice that for an LDPC code of length N and dimen-
sion K , an information sequence of K bits, when K is large, is
a typical Bernoulli sequence with p = 1/2. While not strictly
true, it is reasonable to assume that the encoded sequence is
also a typical Bernoulli sequence. Therefore, in the encoded
codeword, all binary sequences of length l appear with the
same probability. Hence, for one typical LDPC codeword, all
the constellation points are transmitted the same number of
times. As a result, we can assume that almost all the LDPC
codewords are received with the same quality at the receiver.
That is to say, the performance of the decoder is independent
of the codeword, as long as a typical codeword is transmitted.
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Figure 8: The density of modified LLRs for a 16-QAM gray-labelled
constellation at SNR = 10 dB.

Notice that we can always add a random dither to the
codewords to make them typical Bernoulli sequences, but it
seems reasonable that such a dither is not required in prac-
tice. Indeed, we will see later that the codes designed based
on the assumption that all constellation points are transmit-
ted equally likely perform very close to the predicted behav-
ior without the need for a random dither.

Now that all the codewords are assumed to be received
with the same quality at the receiver, the performance of
the LDPC decoder is independent of the codeword. There-
fore, we only need to translate each LLR to its equivalent
value corresponding to the all-{+1} channel-word. In other
words, for every bit which is a “1,” we define the LLR to be
ln(Pr(1)/ Pr(0)) and for every bit which is a “0” we use the
conventional definition of ln(Pr(0)/ Pr(1)). This way, a posi-
tive LLR carries a correct belief, and (once more) the negative
tail of the LLR density shows the LLR error rate. This equiv-
alent LLR density may be computed for all bit-channels and
for every constellation point. We may then mix these densi-
ties uniformly to produce a modified LLR which is suitable
for code optimization.

The density of these modified LLRs is shown in Figure 8.
A negative LLR here reflects an error in a hard decision de-
coder (which was not the case in Figure 6). For a given con-
stellation, a given labelling scheme, and a given noise vari-
ance, we can find such a modified LLR density to be used as
input to a density evolution program for degree distribution
optimization.

4.4. Code design

So far, we have discussed the use of BICM and LDPC codes
for DMT systems in an impulsive environment. We now fo-
cus on the design of capacity-approaching LDPC codes on
such channels. As mentioned before, the optimization algo-
rithm should take the density of LLR messages and the up-
date rules of the decoder as the input and should give an
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optimized degree distribution. Thus, given the channel con-
ditions, that is, SNR of the Gaussian part of the channel and ε
of the erasure part, the purpose of our optimization is to find
the highest rate LDPC code whose convergence is guaranteed
at these channel conditions.

Different methods are used for finding optimized degree
distributions [10, 27]. In this work, we use a method which is
based on linear programming and reflects our goal of finding
the maximum rate for a given channel. We start with a degree
distribution for which convergence to zero error rate is guar-
anteed. In the density evolution program, at each iteration,
we save pin, that is, the error rate of the LLR messages at the
input of the iteration (the input messages to the check nodes)
and also pout,i, that is, the error rate of the LLR messages at
the output of variable nodes of degree i (for all values of i). A
plot of pout,i versus pin for all values of i is equivalent to the
elementary pin − pout extrinsic information transfer (EXIT)
charts of [30], that is, EXIT charts corresponding to differ-
ent variable degrees. For more information on EXIT charts,
please see [31].

It is shown in [30] that for a fixed check-degree distri-
bution, a linear combination of elementary pin − pout EXIT
charts with a set of weights λ = {λ2, . . . , λdv}, such that for all
i, λi ≥ 0 and

∑
i λi = 1 results in the EXIT chart of an irreg-

ular code whose degree distribution is determined by λ, that
is, for all pin,

pout = f
(
pin
) =

∑

i

λi fi
(
pin
)
, (10)

where f (pin) is the EXIT chart of the irregular code and
fi(pin) is the elementary EXIT chart associated with variable
nodes of degree i.

Therefore, a linear program similar to that of [30] can
be used to find an optimized degree distribution. The lin-
ear program of [30] takes a set of elementary EXIT charts, a
desired convergence behavior (given by a curve h(pin)), and
finds the variable-node-degree distribution λ which maxi-
mizes the code rate and for all pin keeps the pout of the ir-
regular code less than or equal to h(pin). Here, we have to
make sure that the change made in the degree distribution is
small, since the elementary EXIT charts found here are valid
only for the degree distribution for which the density evolu-
tion program is executed.

Assuming that making a small change in the degree dis-
tribution of the code will not significantly change the ele-
mentary EXIT charts, our design procedure is as follows.
First, we find f (pin), the current EXIT chart of the code
(for which convergence was observed). Then, we make a
small change in this EXIT chart to make it closer to the line
pout = pin and feed it back as h(pin) to the linear program to
find another degree distribution whose rate is maximum and
whose convergence behavior is better than h(pin). It is shown
in [30] that by moving towards h(pin) = pin we achieve
higher code rates. Using the updated degree distribution, we
run the density evolution program to update the elementary
EXIT charts and repeat the linear program to update the de-
gree distribution. This optimization is iterated until the de-
sired convergence behavior is h(pin) 	 pin.

Table 1: Code design for 16-QAM signalling.

Degree sequence Code 1 Code 2

d1, λd1 2, 0.1448 2, 0.1561

d2, λd2 3, 0.1767 3, 0.1790

d3, λd3 7, 0.1434 7, 0.0786

d4, λd4 8, 0.0819 8, 0.1404

d5, λd5 21, 0.1015 22, 0.0004

d6, λd6 22, 0.0256 23, 0.0309

d7, λd7 24, 0.0606 24, 0.1656

d8, λd8 25, 0.0273 100, 0.2490

d9, λd9 80, 0.2382 —

dc 22 13

Channel conditions:
ε = 0.06, SNR = 10 dB 7 dB

Rate 0.740 0.566

Approx. gap to
the Shannon limit

0.09 dB 0.08 dB

5. SIMULATION RESULTS

To show the success of our proposed system, we have de-
signed two irregular codes for 16-QAM signaling at two
different channel conditions. The first code is designed at
SNR = 10 dB, and ε = 0.06 and the second one at SNR =
7 dB and ε = 0.06. At these channel conditions, the capac-
ity of BICM is almost 0.744 bits/symbol (per bit-channel)
and 0.570 bits/symbol, respectively. Our codes, whose de-
gree distributions can be found in Table 1, have rates of
0.740 bits/symbol and 0.566 bits/symbol, respectively. The
maximum variable degree allowed in these designs is 80 for
code 1 and 100 for code 2, and their check degree is chosen
to be regular. The capacity (normalized per bit-channel) of
BICM with 16-QAM signaling on our channel model with
ε = 0.06 is 0.740 at about 9.91 dB and is 0.566 at about
6.92 dB, hence in both cases a gap of about only 0.08-0.09 dB
from the Shannon limit exists.

We have computed the threshold of a code of rate 0.74
optimized for the AWGN channel (with dc = 24 and max-
imum dv = 100) on our channel. The degree distribution
of the code is selected from the optimized codes reported
in [32]. We first verified the reported threshold of this code
on a Gaussian channel. Then, assuming an erasure rate of
ε = 0.06 and 16-QAM signalling, we found the threshold
of convergence of this code to be at about 10.2 dB or almost
0.29 dB away from the capacity.

It can be concluded that although the performance of
codes designed for the AWGN is fairly good on our channel
model, further improvement in the order of 0.2 dB is possi-
ble. Similar results have been observed in [33], where irreg-
ular codes are designed for the Rayleigh channel. In fact, the
performance of the codes designed for the AWGN channel on
a Rayleigh channel is about 0.2 dB worse than those designed
for the Rayleigh channel.
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Figure 9: Performance comparison of LDPC codes in a system
based on 16-QAM signaling and BICM in the presence of impulse
noise.

We have also simulated the performance of our rate 0.74
code and have compared it with the above-mentioned rate
0.74 code optimized for AWGN. Both codes have a block
length of 30 000. Figure 9 shows the results of our compar-
ison. The erasure rate for simulation is ε = 0.06 and a maxi-
mum of 100 iterations is allowed. As expected, our code has
a performance that is about 0.2 dB better than the code de-
signed for AWGN channel. The code designed for AWGN
is slightly more complex because it has a higher check de-
gree and hence its decoding complexity is about 10% higher.
The decoding complexity for both codes is comparable with a
512-state trellis code (see [4] for a detailed study of complex-
ity and comparison with the complexity of 512-state trellis
code).

With this code length and code rate, and assuming an
ADSL system with a bit rate of 1 Mbits/s, the buffer-fill de-
lay is

tb f = 30 000× 0.74
1 000 000

= 22.2 milliseconds. (11)

Therefore, neglecting the encoding/decoding delay and also
the transmission delay, the total delay of the system can be
approximated to be about 45 milliseconds. For ADSL systems
with higher data bit rates, longer block-length codes can be
used and hence, performance closer to the threshold can be
expected.

Although SNRnorm, defined as SNRnorm = SNR /(2R − 1)
[14], is usually a better measure than SNR, this paper uses
SNR because our design goal is to maximize the code rate for
a given channel condition, and prior to the design the code
rate is not known (however, Figure 9 uses SNRnorm, since the
rate is known).

The conventional solution based on trellis codes and
outer RS codes is known to have a gap of a few dB from the
Shannon limit. Also notice that a (255, 239) RS code (of a
rate a little bit less than 0.94) can correct a maximum of 16
erased bytes. Assuming that each byte has at most one erased
bit and that the bit erasure probability is ε, we can define
p = 1 − (1 − ε)8 as the byte erasure probability. To guaran-
tee an error rate of less than 10−6, p should take a value for
which

255∑

i=17

(
255
i

)

pi(1− p)(255−i) < 10−6. (12)

This results in an error-correction capability of p < 0.0159
and hence ε < 2.003 × 10−3. In other words, about 0.2%
error can overwhelm an RS code that introduces more than
6% rate loss to the system. Our code, however, can correct up
to 6% erasures. This erasure correction capability is achieved
by a rate loss of 6% introduced by the channel model whose
capacity at high SNR is 0.94.

6. CONCLUSIONS

In this work, we have shown that a carefully optimized LDPC
code is a promising candidate coding approach in DMT sys-
tems with impulsive noise. To illustrate the potential of this
approach, we have shown how to optimize an LDPC code
at a fixed SNR and for a fixed constellation size. Further re-
search is required to address practical DMT systems that re-
quire flexible coding to accommodate a variety of SNRs and
hence a variety of constellation sizes at different tones. In-
deed, it is shown in [4] that a single LDPC code can perform
effectively in a DMT system if a fixed number of bits from
each constellation is assigned to it.

From Figure 9, it can be seen that both LDPC codes show
an error floor at bit error rates near 10−6. Error floors in
LDPC codes are mainly due to the presence of short cycles
in the graph structure of the code. This will be a less serious
problem for long block-length codes. Many solutions have
been proposed to handle the error floor issue. One easy so-
lution is to use a very high-rate, low-complexity outer BCH
code (e.g., a double-error correcting BCH code). However,
there also exist LDPC codes which are carefully structured to
push the error floor to a much lower BER (10−8 and lower)
[34, 35]. Using such LDPC codes, the need for an outer code
is completely eliminated.
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