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Abstract—This paper characterizes the capacity of a class of
modular additive noise relay channels, in which the relay observes
a corrupted version of the noise and has a separate channel to the
destination. The capacity is shown to be strictly below the cut-set
bound in general and achievable using a quantize-and-forward
strategy at the relay. This result confirms a previous conjecture
on the capacity of channels with rate-limited side information at
the receiver for this particular class of modulo-sum channels. This
paper also considers a more general setting in which the relay
is capable of conveying noncausal rate-limited side information
about the noise to both the transmitter and the receiver. The
capacity is characterized for the case where the channel is binary
symmetric with a crossover probability �

�
. In this case, the rates

available for conveying side information to the transmitter and
to the receiver can be traded with each other arbitrarily—the
capacity is a function of the sum of the two rates.

Index Terms—Channel with side information, cut-set bound,
modulo-sum channel, quantize-and-forward, relay channel.

I. INTRODUCTION

T HE relay channel is a fundamental building block in net-
work information theory. Although the capacity of the

general relay channel is not yet known, the capacities of many
specific classes of relay channels have been found. These spe-
cial classes include the degraded and reversely degraded [1], the
semideterministic [2], a class of orthogonal [3], a class of de-
terministic [4] relay channels, as well as specific examples of
Gaussian relay channels with phase fading [5] and Gaussian or-
thogonal relay channels [6]. All the above relay channels for
which capacities are characterized share one thing in common:
they achieve their respective cut-set bounds. This makes con-
verses straightforward. Unfortunately it appears that the cut-set
bound cannot be achieved for many practical relay channels.
Efforts to find different bounds, or to prove the looseness of
the cut-set bound have proved to be quite difficult. Zhang’s
partial converse [7] demonstrated the latter for a relay channel
with a noiseless relay link (without characterizing its actual ca-
pacity); Zahedi [8] provided some justifications for why the
cut-set bound cannot be tight in all cases.
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In the first part of this paper, we find the capacity of a non-
trivial class of modulo-sum relay channels. In these channels,
the relay observes a correlated version of the noise between
the source and the destination, and has a dedicated channel to
the destination. We show that the capacity can be strictly below
the cut-set bound, and is achievable by a quantize-and-forward
strategy (also known as estimate-and-forward and compress-
and-forward) due to Cover and El Gamal [1, Theorem 6]. The
quantize-and-forward strategy was previously only known to
achieve the cut-set bound capacities of one class of determin-
istic relay channels [4] and the trivial case where the relay link
can support a sufficiently large rate to allow for a complete
description of the relay’s observation at the destination. The
modulo-sum relay channel appears to be a first example of a
channel for which this strategy achieves a capacity strictly below
the cut-set bound.

The quantize-and-forward strategy was designed for use in
channels where the relay has a poor-quality channel from the
source. In this strategy, the relay quantizes its received signal,
and transmits the quantized signal to the destination. The des-
tination first decodes the quantized signal from the relay, then
uses this signal to help decode the source message. The destina-
tion may also use its own received signal to help the decoding
of the quantized signal from the relay, because the two signals
may be correlated in a general relay channel. This technique is
known as Wyner–Ziv coding. Quantize-and-forward is a natural
strategy for the modular channel considered in this paper where
the relay observes only the noise. This is because there is no
message for the relay to decode; all the relay can do is to de-
scribe the noise to the destination.

The converse result for this class of relay channels depends
crucially on two properties of modulo-sum channels. In these
channels, a uniform distribution on the input alphabet achieves
the maximum possible entropy of the output, regardless of the
statistics of the additive noise. Further, under a uniform input
distribution, the output of a modulo-sum channel is also inde-
pendent of the additive noise. This has the consequence of sim-
plifying the converse: the side information in Wyner–Ziv coding
is not useful since the destination’s observation is independent
of the relay’s output.

In the second part of this paper, we explore the connection
between the class of relay channels considered above and the
class of channels with rate-limited noncausal state information
available to the transmitter and the receiver. In a channel with
noncausal side information, the channel transition probability
depends on a state variable , which is assumed to be observed
noncausally by a relay. The relay encodes the entire sequence

under rate constraints to the transmitter and to the re-
ceiver, respectively, in order to facilitate the communication be-
tween the two. The general channel model is depicted in Fig. 1.
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Fig. 1. Channel with rate-limited side information.

Channels with side information have been studied extensively
in the literature. Gel’fand and Pinsker [9] derived the capacity
for the case in which complete side information is available at
the transmitter but no side information is available at the re-
ceiver (i.e., , ). Ahlswede and Han [10]
gave an achievable rate for the case where but can
be arbitrary, and conjectured that their expression is indeed the
capacity. Their achievability result was further generalized by
Heegard and El Gamal [11, Theorem 1] for the case where
and can both be arbitrary. Further, for the special case in
which is arbitrary, but is sufficiently large to allow for
a complete description of the state at receiver, the capacity was
characterized by Rosenzweig, Steinberg, and Shamai [12]. In
general, the capacities of channels with arbitrary and are
still open.

A relay channel where the relay only gets to observe some
possibly stochastic function of the noise and has a dedicated
finite-capacity channel to the destination can be viewed as a
channel with rate-limited state information available to the re-
ceiver and with no side information at the transmitter (i.e.,

). The capacity result for modulo-sum relay channels presented
in the first part of the paper confirms the conjecture by Ahlswede
and Han [10] for this special class of modulo-sum channels.

The converse used in the first part of this paper also allows us
to make progress on the capacity of channels with rate-limited
side information to both the transmitter and the receiver (i.e.,
with arbitrary and ). In particular, we characterize the ca-
pacity for a case where the channel between the transmitter and
receiver is binary symmetric with a Bernoulli- noise distribu-
tion and the relay observes the channel noise through another bi-
nary symmetric channel (BSC) with an arbitrary crossover prob-
ability. The capacity coincides with the achievable rate provided
by [11, Theorem 1]. Further, the resulting capacity expression
in this particular case has the property that it is only a func-
tion of the sum of and . Thus, the rates available for the
transfer of state information to the transmitter and to the receiver
not only are interchangeable, but also can be traded with each
other arbitrarily. This appears to be a first example of a non-
trivial channel with rate-limited state information available to
both the transmitter and receiver for which the capacity is char-
acterized.

The rest of the paper is organized as follows. Section II
characterizes the capacity of a binary symmetric relay channel
and shows that the capacity can be strictly below the cut-set
bound. The extension to the modulo-sum case is presented in
Section III. The connection with channel with rate-limited side
information is presented in Section IV. The paper concludes
with Section V.

Fig. 2. A binary relay channel where the relay observes a corrupted version of
the channel noise.

II. A BINARY SYMMETRIC RELAY CHANNEL

We begin by deriving the capacity of a particular binary sym-
metric relay channel. The derivation will be directly applicable
to a broader class of modulo-sum relay channels. The simple
binary symmetric case is used to distil the essential steps and
ideas.

Consider the relay channel as shown in Fig. 2. Here,
the channel input goes through a memoryless BSC with
crossover probability to reach , i.e.,
with being a Bernoulli- random variable denoted as
(i.e., with probability and with proba-
bility ). The relay gets to observe a noisy version of

through a memoryless BSC with crossover probability
, i.e., , where . The

relay also has a separate memoryless BSC to the destination
, where .

Let us define

(1)

for future reference. If there were no corrupting variable ,
then the capacity of this channel is as recently characterized by
Kim [4]

(2)

Both hash-and-forward [4], a strategy where the relay simply
hashes into equal sized bins, and the classic quantize-
and-forward are capacity achieving. The multiple-access
cut-set bound is , which is obtained by assuming
that the relay already knew the message the source would like
to transmit. One way to interpret the achievability of the mul-
tiple-access cut-set bound is that if were absent, decoding

would be the same as decoding . So, the relay, by sending
parity information about , can be interpreted to be performing
a version of decode-and-forward, as if it already knew the
message; random parities for turn into random parities for

. This interpretation would fail if the relay’s observation of
is corrupted by . To the best of the authors’ knowledge, the

capacity of this class of relay channels when is present has
not been characterized previously.

The following is a reasonable strategy for this channel. The
relay tries to quantize in such a way as to minimize the uncer-
tainty about at the destination. The main result of this section
is that the above approach is capacity achieving for a class of
modulo-sum relay channels including the channel in Fig. 2.

Theorem 1: The capacity of the binary relay channel in
Fig. 2 is

(3)
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where the maximization may be restricted to ’s with
, and is as defined in (1).

A. Proof of Achievability for Theorem 1

The achievability can be proved by a direct application of [1,
Theorem 6] if we fix the input distribution of as and
identify with in [1]. A separate proof is provided here
for completeness based on the theory of jointly strongly typical
sequences [13, p. 326].

We transmit at rate over blocks, each of length . For
the last block, no message is transmitted. As ,
becomes arbitrarily close to .

Codebook Generation: Generate independent random
sequences of length , , where each
sequence is generated with an independent and identical distri-
bution (i.i.d.) . Fix a such that it satisfies the con-
straint . Generate independent random
sequences of length , , where each
sequence is generated with i.i.d. .

Encoding: We describe the encoding for block . To send
message , the transmitter simply sends

. The relay, having observed the entire corrupted noise
sequence from the previous block , looks in its
codebook and finds a sequence that is jointly strongly
typical with . It then encodes and sends the index
across the separate channel to the destination. Only the relay
transmits to the destination in the last block.

Decoding: The destination, upon decoding , looks for a
such that is jointly strongly typical with

and .
Analysis of the Probability of Error: Because of the sym-

metry of the codebook construction we can perform the analysis
assuming was sent over all the blocks. Since the decod-
ings of different blocks are independent, we can focus on the
probability of error over the first block and drop the time in-
dices. The error events are as follows:

: are not jointly strongly typical;

: , are jointly strongly typical;

: are not jointly strongly typical;

: The destination makes an error decoding sent by the
relay across the separate channel;

: , are jointly strongly
typical.

For sufficiently large, we have . Following the
argument of [13, Sec. 10.6], for sufficiently
large . By the Markov lemma [13, Lemma 15.8.1], since

forms a Markov chain,
for sufficiently large. Since by construction ,
the index can be sent to the destination with an arbi-
trarily small probability of error, so . Finally,
the probability that another randomly generated
is jointly strongly typical with and is less than

for any and sufficiently large

[13, Lemma 10.6.2]. Using the union bound, we have
. Thus, when

(4)

we can find a sufficiently large such that

Now, since and are independent, we have

(5)

(6)

(7)

where because for BSCs under the uniform
input distribution , the output is independent of the
additive noise , and hence . Collecting terms we see that

, so that using the union bound again we
can make the probability of error over all of the blocks less
than as long as .

B. Proof of Converse for Theorem 1

The converse depends on the following lemma.

Lemma 1: Let , , be independent Bernoulli i.i.d.
sequences. Let and , where

and are the input and output sequences of the relay
as shown in Fig. 2. The following inequality holds for any en-
coding scheme at the relay:

(8)

where the minimization on the right-hand side may be restricted
to ’s with .

Proof: The proof of the lemma is closely based on the
proof of Theorem 15.8.1 in [13]. Fixing an encoding scheme
at the relay, our strategy is to show that there always exists a
for which and . This
would allow us to conclude that

We start by finding a lower bound for

(9)

(10)

(11)

where the third line follows from the fact that
forms a Markov chain. The Markov chain follows

because ’s are i.i.d., the channel from to is memoryless,
and is only a function of , hence can only be affected
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by through and . Now define ,
we get

(12)

Next, note that forms a Markov chain.
As a result

(13)

(14)

(15)

where (13) follows from the data processing inequality, and (15)
follows from the fact that is independent of and con-
sequently . Using the definition of , we get

(16)

Recall that . Since the channel be-
tween and is memoryless, by [13, Lemma 7.9.2],

. Thus, we have shown the following inequalities:

(17)

(18)

Introducing an independent timesharing random variable uni-
formly distributed over (see [13, Theorem 15.8.1]),
the above equations can be rewritten as

(19)

(20)

Now since is independent of (as the distribution of
does not depend on ), we have

(21)

Finally, and have the same joint distribution as and
, so defining , , and , we have

shown the existence of a random variable such that

(22)

(23)

for any encoding scheme at the relay. Since for every possible
encoding scheme at the relay we can construct an i.i.d. satis-
fying the above equations, the minimum over all ’s satisfying

must satisfy (8). The cardinality bound is the
same as in [13, Theorem 15.8.1].

The converse can now be proved as follows. Let
be the source message.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

where
(a) follows from Fano’s inequality,
(b) follows from the fact that is independent of ,
(c) follows from the fact that the maximum entropy of a bi-

nary random variable of length is ,
(d) follows from Lemma 1.

Thus, we have shown that for any relaying scheme with a low
probability of error, .

C. Comments on Theorem 1

The capacity of the binary symmetric relay channel consid-
ered above is achieved essentially by digitizing the separate
channel between the relay and destination. All that matters is
that the capacity of the separate channel is sufficiently large
to support the relay’s description of , the quantization vari-
able. There is no advantage in joint source–channel coding at
the relay. The input codebook for is drawn from the uniform

distribution, identical to the capacity achieving distri-
bution if the relay were absent; the source merely increases its
rate once the relay is introduced.

There are two conditions which are important for the con-
verse to work. The channel between the source and destination
should be additive and modular. These two conditions allow
for two crucial simplifications in the converse. First, a uniform
input distribution maximizes the output entropy, regardless of
any information that the relay may convey about the noise; this
was used in (30). Second, the linear nature of the channel, com-
bined with the expansion in (29), reduces the role of the relay
to essentially source coding with a distortion metric being the
conditional entropy of . This is in contrast to a general relay
channel where the relay observes a combination of the source
message and noise, so there is an opportunity for the destination
to use its received signal as side information in the decoding of
the relay’s quantized message. For the binary symmetric relay
channel, the uniform input distribution completely eliminates
any aid the destination’s output can provide in the decoding of
the relay’s message; this makes the converse easier to prove.
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D. Capacity Can Be Below the Cut-Set Bound

To see that the capacity as stated in Theorem 1 can be strictly
below the cut-set bound, consider the case in which has an
i.i.d. distribution. The capacity can now be evaluated
as

(34)

where , is the
inverse of in the domain , and

. This capacity expression follows by noting that
, so that the constraint in the

maximization in (3) can be rewritten as

(35)

Now we use a lemma due to Wyner and Ziv on the conditional
entropy of binary random variables, known as “Mrs. Gerber’s
Lemma” [14], to claim that if

(36)

then

(37)

with equality if and only if given is a random
variable. Wyner and Ziv’s inequality holds here because when

is , we can write , where is
and and are independent.

Now, let . Observe that the that achieves
equality in (37), i.e., the that gives rise to given as

, is precisely the that minimizes the
Hamming distortion of under a rate constraint in standard
rate–distortion theory. This is because rate–distortion theory
states that for binary random variables, under a rate constraint

, the minimum achievable average distortion must satisfy
and given must be

. Further, as is , the distribution of the optimal
is also . The capacity (34) follows by using this in

(3) and by substituting and in (37).
We now show that the capacity as given in (34) is strictly

below the cut-set bound. The cut-set bound for the relay channel
is [1]

(38)

When is , for the multiple-access cut we have

(39)

(40)

(41)

(42)

where the equality in (40) is achieved by letting and have
independent distributions. Essentially, the source–des-
tination channel has zero capacity when is ; the mul-
tiple-access bound is just the capacity of the relay–destination
link. Similarly, for the broadcast cut we have

(43)

(44)

(45)

(46)

In the first line, we use the fact that is independent of and
given . In the third line, we use the fact that the entropy

of a binary random variable is bounded by , and for modulo-
addition can be equivalently written as

. In the fourth line, we use the fact that is and
independent of , so is independent of . Consequently, is
independent of both and as well. Thus, (46) follows. Note
that the equality in (45) is achieved when ,
which happens if we choose and to be independent, and
let . Intuitively, (46) is the capacity of a binary
channel with as the input and as the output.

Now, if we set and to be independent random
variables, the equalities in both the multiple-access and broad-
cast bounds (40) and (45) are simultaneously achieved with the
same . Therefore, the cut-set bound for this particular
channel is equal to

(47)

The capacity given by (34) is in general strictly below the cut-set
bound as illustrated by an example in Fig. 3.

III. EXTENSION TO MODULAR RELAY CHANNELS

We now extend the capacity results in Section II to include
the general modulo-sum relay channel depicted in Fig. 4. The
source and the destination are related by a modulo-sum channel.
The relay observes , which is a correlated version of the noise

with a conditional distribution . The relay also has a
dedicated channel to the destination with a capacity

(48)

The binary symmetric relay channel considered in Section II is a
specific instance of the modulo-sum relay channel. The capacity
proof for the binary case can be augmented to give the capacity
of the modulo-sum relay channel.

Theorem 2: The capacity of a modular additive noise relay
channel with and , where the relay observes

with , and where the destination ob-
serves from the source and observes
from the relay through a separate channel with transition prob-
abilities , is

(49)

where the maximization may be restricted to ’s with
, and is as defined in (48).

Proof: Achievability follows by applying a simple exten-
sion to the achievability proof of Theorem 1. In addition, the
binary symmetric relay channel converse appropriately modi-
fied to reflect the different alphabet sizes remains valid. This
is because all the necessary conditions for the converse to work
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Fig. 3. The capacity and the cut-set bound for a binary modulo-sum relay channel, with � � and � � ���, as functions of � .

Fig. 4. A modulo-sum relay channel where � � � � � ���� �	 and the
relay observes a corrupted version of the channel noise.

are satisfied. The modulo-sum channel is linear, and the uniform
distribution applied at the input maximizes the output channel
entropy regardless of how much is known about the additive
noise, so (30) holds.

IV. CHANNELS WITH RATE-LIMITED SIDE INFORMATION AT

THE TRANSMITTER AND RECEIVER

This section explores how the above result on the relay
channel relates to and expands upon the body of work on chan-
nels with rate-limited state information to the transmitter and to
the receiver. We show that the relay channel result confirms a
conjecture due to Ahlswede and Han in this particular modular
channel case. Further, we show that our converse technique
gives a new upper bound for modular channels with rate-limited
side information and a new capacity result for a specific binary
case.

A. Connection With the Ahlswede–Han Conjecture

The modulo-sum relay channel model presented in Fig. 4 fits
into the framework of a channel with side information presented
in Fig. 1, once we set , identify with , and digitize
the relay–destination link to be of rate and set . The
relay observation can be considered as a channel state, be-
cause depends on through a discrete memoryless channel

and one can always factor out from the overall tran-
sition probability . With this identification
in mind, Theorem 2 confirms a conjecture due to Ahlswede and
Han [10] on the capacity of channels with rate-limited side in-
formation to the receiver for this specific class of modulo-sum
channels.

The Ahlswede–Han conjecture states that for channels with
rate-limited state information to the receiver as shown in Fig. 5,
the capacity is given by

(50)

where the maximization is over all probability distributions of
the form such that

(51)

and the auxiliary random variable has cardinality
The conjecture states that the state variable should be quan-
tized at rate in such a way as to maximize the resulting mu-
tual information between and . Ahlswede and Han proved
in [10] that all rates below the capacity are achievable.

Now, consider the modulo-sum relay channel. Identify with
and with . We claim that a uniform distribution on

maximizes the Ahlswede–Han rate in this case. This is because
the uniform distribution on makes independent of , so
that both the rate expression (50) and the constraint (51) in the
Ahlswede–Han conjecture, respectively, coincides with the rate
expression and constraint in (49).1 By the converse part of The-
orem 2, this achievable rate is the capacity, thus confirming the
conjecture for the class of modulo-sum channels described in
this paper.

1Allowing for the difference in cardinality bounds.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 4, 2009 at 14:23 from IEEE Xplore.  Restrictions apply.



ALEKSIC et al.: CAPACITY OF A CLASS OF MODULO-SUM RELAY CHANNELS 927

Fig. 5. Channel with rate-limited state information at the receiver.

Fig. 6. A binary channel with rate-limited state information available to both
the transmitter and the receiver.

B. An Upper Bound for Modulo-Sum Channels With
Rate-Limited Side Information at the Transmitter and the
Receiver

We now augment the modulo-sum channel considered in Sec-
tion II by allowing the relay to convey noncausal side informa-
tion to both the transmitter and the receiver at limited rates. The
binary case is depicted in Fig. 6, where the channel input
goes through a BSC with crossover probability to reach ,
i.e., where is i.i.d. . The
relay observes the entire sequence which is a noisy version
of , i.e., , where is i.i.d. . The
relay also has a separate memoryless BSC to the transmitter

, where is , and a separate memoryless
BSC to the destination , where is . Let
us define

(52)

(53)

for future reference. The main result of this section is that the
converse proof for the class of relay channels considered in the
first part of this paper can be modified to yield an upper bound
for the channel in Fig. 6.

Theorem 3: The capacity of the channel in Fig. 6 is bounded
above by

(54)

where the maximization may be restricted to ’s with
, and , are as defined in (52) and (53).

The bound depends on an extension of Lemma 1.

Lemma 2: Let , , and be independent Bernoulli
i.i.d. sequences. Let , and

, where , and are the input and
the two output sequences of the relay as shown in Fig. 6. The
following inequality holds for any encoding scheme at the relay:

(55)

where the minimization on the right-hand side may be restricted
to ’s with .

Proof: Setting , letting play the
role of , and allowing for a slight abuse of notation, Lemma
2 follows directly from Lemma 1.

Proof of Theorem 3: The upper bound can now be proved
as follows. Let be the source message.

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

where
(a) follows from the independence of the message and ,
(b) follows from Fano’s inequality,
(c) follows from the fact that forms a

Markov chain when is known,
(d) follows from the fact that is independent of given

,
(e) follows from the fact that the maximum entropy of a bi-

nary random variable of length is ,
(f) follows from Lemma 2.

Just as in Section III, the above upper bound can be trivially
modified to hold for a more general class of modular channels
with rate-limited side information.

At this point, it is natural to ask whether this upper bound is
achievable in general for the modular channel. Unfortunately,
the evaluation of the optimal in (54) via exhaustive search
gives some indication that the upper bound may not always be
achievable.

There is, however, at least one special case where the optimal
is analytically tractable and the upper bound is achievable.

This is when is i.i.d. . In Section II-D, a particular bi-
nary relay channel with being i.i.d. was considered,
and its capacity was characterized to be strictly below the cut-set
bound. This capacity is achieved by letting the relay quantize its
observation with the goal of minimizing the Hamming distortion
for at the destination. The resulting optimal has an additive
structure: the quantized signal, once conveyed to the destination
via a separate channel, is merely to be added to the destination’s
received signal from the source. Since no Wyner–Ziv decoding
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is performed at the destination while decoding the quantized
signal from the relay, decoding the quantized signal and adding
it to the channel could just as easily have been performed at the
transmitter with no loss in the overall rate.

C. Capacity of a Binary Channel With Rate-Limited Side
Information at the Transmitter and the Receiver

Consider the binary channel with rate-limited side informa-
tion as shown in Fig. 6 with having an i.i.d. distri-
bution, i.e., . The main result of this section is that the
capacity of this channel is precisely (54) and is achieved by a
simple quantization scheme. In this case, the capacity depends
only on the sum of rates available for state description
at the relay.

Theorem 4: The capacity of the channel in Fig. 6 with
being i.i.d. is

(65)

Proof: The converse is based on the evaluation of the ex-
pression on the right side of (54). As in Section II-D, this can
be done using Wyner and Ziv’s conditional binary entropy in-
equality, “Mrs. Gerber’s Lemma” [14]. Wyner and Ziv’s in-
equality holds because, as mentioned in Section II-D, when
is we can write , where is
and and are independent. Observing that the constraint

is equivalent to the constraint
and applying Wyner and Ziv’s inequality yields

.
The achievability can be established based on an evaluation

of the achievable result of Heegard and El Gamal [11, Theo-
rem 1]. A formal proof is presented in the Appendix.

In the following, we give justification for the achievability of
the rate given by (65) by outlining a simple quantization strategy
for the relay. In this strategy, the relay first quantizes with
at rate with a goal of minimizing the Hamming distortion of

. Let represent the resulting Hamming distortion. Next, the
relay subtracts off from and quantizes using

at rate with a goal of further minimizing the Hamming
distortion of . Let the resulting distortion be . The relay
sends to the transmitter and to the receiver through its two
separate channels. The transmitter simply adds to its trans-
mitted signal while the receiver adds to the channel output.
Recalling that since is we can write ,
where is and and are independent. The channel
from the transmitter to receiver now looks like

(66)

(67)

(68)

where all additions are modulo , and
is independent of and and distributed like a

random variable. The distribution of
follows from the rate distortion theory for binary random

variables, notably the fact that a binary random variable is

successively refinable under the Hamming distortion measure
[15] and the fact that the refining quantization variables have
an additive structure (which can be verified using the method
in [16]). In other words, quantizing first at rate , then
subtracting off the quantization variable and further quantizing
with yields a final distortion as if were originally quan-
tized at a rate of . More precisely, since

(69)

(70)

adding the two equations together, we get
, implying and is distributed

as . Now, the channel between the
transmitter and the receiver becomes equivalent to ,
where has a distri-
bution. This yields (65).

D. Comments on Theorem 4

In general, when is , the rates available to the
relay for communicating side information to the transmitter and
to the receiver may be traded with each other arbitrarily without
incurring any penalty to the overall rate. State information at the
transmitter and at the receiver is equally valuable. Note that by
setting to zero in the capacity expression of Theorem 4 we
recover our previous result for the binary relay channel, while
setting to zero yields a new capacity result for a channel with
rate-limited side information to the transmitter only.

Note also that at the relay, the order of quantization is irrel-
evant; , may be paired for transmission with the trans-
mitter and the receiver indiscriminately. Finally, we observe that
digitizing the links to the transmitter and the receiver is optimal.
No joint source–channel coding is necessary.

V. CONCLUSION

The paper identifies the capacity of a class of modular relay
channels in which the relay observes only the additive noise.
The capacity is shown to be strictly below the cut-set bound and
achievable using a quantize-and-forward scheme where quanti-
zation is performed with a new metric, the conditional entropy
of the noise at the destination. This is the first example of a relay
channel for which the capacity is characterized to be strictly
below the cut-set bound. It is proved that there is no advantage in
performing joint source–channel coding of the relay’s message
over its dedicated link to the destination—digitizing the link is
capacity achieving. The capacity derived here confirms a pre-
vious conjecture on the capacity of channels with rate-limited
side information at the receiver for this modular channel case.

This paper also characterizes the capacity of a binary channel
with rate-limited side information at both the transmitter and the
receiver. It is shown that the capacity is achieved via a succes-
sive refining quantization scheme for the binary random vari-
able. The capacity is shown to be a function of the sum of the
rates available for communicating to the transmitter and to the
receiver. This is the first example of a nontrivial channel with
rate-limited state information available to the transmitter and the
receiver whose capacity is characterized.
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APPENDIX

ACHIEVABILITY PROOF OF THEOREM 4

For the channel in Fig. 1, Heegard and El Gamal [11, The-
orem 1] proved that the following set of rates is achievable.
Fixing and auxiliary random variables , , ,
and , all rates in the interior of the convex hull
of the set

where the mutual information expressions are evaluated with
probability distribution function of the form

are achievable.
To prove Theorem 4 , we identify with , with ,

with , and set . Then by a direct substitution
into [11, Theorem 1], we have the following result. Fixing

and auxiliary random variables , all
rates in the interior of the convex hull of the set

(71)

where the mutual information expressions are evaluated with
probability distribution function of the form

are achievable.
To show that (65) is achievable, we identify the joint distri-

bution as follows. Let

(72)

(73)

be independent. The idea is to use for a coarse quantization
of at a rate with distortion , and for
a successive refinement at an additional rate and with a final
distortion . By standard rate–distortion
theory, the quantization variable is and is related to

via a BSC test channel with crossover probability . Now,
to obtain a successive refinement, should be a binary random
variable representing the quantization of , which is

. In this case, standard rate–distortion theory states that

must be , yielding the expression (73). Note

that because is , and are independent. Further,
the joint distribution is given by

where is independent of
.

Next, we specify by setting to be
independent of and let

Finally, the channel model gives , ,
where is independent of . All additions
here are performed modulo .

Let us consider the first three constraints of (71) in turn

(74)

Similarly, with the second constraint

(75)

where follows because and
is independent of , and similarly

holds because . Finally, with the last constraint

(76)

Since all the constraints are satisfied, the following rate between
the transmitter and the receiver is on the boundary of the Hee-
gard and El Gamal’s region:

(77)

Therefore, any rate is
achievable.
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