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Abstract—This paper studies the relaying strategies and the
approximate capacity of the classic three-node Gaussian relay
channel, but where the noises at the relay and at the desti-
nation are correlated. It is shown that the capacity of such
a relay channel can be achieved to within a constant gap of
1
2
log2 3 = 0.7925 bits using a modified version of the noisy

network coding strategy, where the quantization level at the relay
is set in a correlation dependent way. As a corollary, this letter
establishes that the conventional compress-and-forward scheme
also achieves to within a constant gap to the capacity. In contrast,
the decode-and-forward and the single-tap amplify-and-forward
relaying strategies can have an infinite gap to capacity in the
regime where the noises at the relay and at the destination are
highly correlated, and the gain of the relay-to-destination link
goes to infinity.

Index Terms—Approximate capacity, noise correlation, noisy
network coding, relay channel.

I. INTRODUCTION

The relay channel models a communication scenario where
an intermediate relay is deployed to assist the direct commu-
nication between a source and the destination. Although the
capacity of the relay channel is still not known exactly even
for the Gaussian case, much progress has been made recently
in the characterization of its approximate capacity [1]–[3].

In the classic Gaussian relay channel model, the noises
at the relay and at the destination are independent. In many
practical systems, however, the noises at the relay and at the
destination may be correlated. This may arise, for example,
due to the presence of a common interference, which in a
practical system is often treated as a part of the background
noise, but nevertheless contributes to the correlation between
the noises.

The Gaussian relay channel with correlated noises has
been studied in [4], where relaying strategies such as the
decode-and-forward and the compress-and-forward schemes
are studied in full-duplex or half-duplex modes. Likewise,
the effect of noise correlation for the single-tap amplify-and-
forward scheme has been studied for the diamond network
and the two-hop parallel relay network in [5]. In both papers,
noise correlation has been found to be beneficial. Neither [4]
nor [5], however, addresses the question of whether the classic
relaying strategies are able to achieve to within constant bits
of the capacity for the relay channel with correlated noises.

Inspired by the recent work [1] and [3], where the quantize-
map-and-forward and the noisy-network-coding strategies with
fixed quantization level at the relays are shown to achieve the
capacity of arbitrary Gaussian relay networks with uncorre-
lated noises to within a constant gap, this paper shows that
such strategies are also capable of achieving the capacity of
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Fig. 1. Three-node Gaussian relay channel with correlated noises

the three-node Gaussian relay channel with correlated noises
to within a constant gap. However, unlike the existing schemes
of [1] and [3], this paper shows that the relay quantization level
needs to be modified to be noise-correlation dependent in the
correlated-noise case. As a corollary, this paper establishes that
the conventional compress-and-forward scheme [6] achieves
to within constant bits of the capacity for the Gaussian relay
channel in the correlated-noise case as well. Finally, in contrast
to the case with uncorrelated noises, the decode-and-forward
and the single-tap amplify-and-forward strategies can have an
infinite gap to capacity, when the noise correlation goes to ±1
and the gain of the relay-to-destination link goes to infinity.

II. CHANNEL MODEL

This paper considers a real-valued discrete-time three-node
Gaussian relay channel as depicted in Fig. 1, which consists of
a source X , a destination Y , and a relay. The relay observes a
noise-corrupted version of the source signal, denoted by YR,
and transmits XR to the destination. The source-to-destination
channel is denoted hSD, the relay-to-destination channel hRD,
and the source-to-relay channel hSR. The additive Gaussian
noises at the relay and at the destination are denoted as ZR
and Z respectively. Mathematically, the channel model is:

YR = hSRX + ZR, (1)
Y = hSDX + hRDXR + Z. (2)

Without loss of generality, the power constraints at the source
and at the relay can both be normalized to one, i.e., E[X2] ≤ 1
and E[X2

R] ≤ 1; so can the noise variances, i.e., ZR ∼ N (0, 1)
and Z ∼ N (0, 1). Different from most of the literature
that assumes independence between ZR and Z, this paper
introduces a correlation between the two noises

ρz ,
E [ZRZ]√

E[|ZR|2]E[|Z|2]
. (3)

Note that Z and ZR are both i.i.d. in time. Further, the relay
operation is causal.
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III. WITHIN CONSTANT BITS OF THE CAPACITY

To approach the capacity, the relaying strategy must take
advantage of the noise correlation. Consider the limiting
scenario of ρz → ±1. The relay’s observation becomes
increasingly useful to the destination, thus an increasingly fine
quantization resolution at the relay is required — the fixed
quantization strategy of [1] and [3] would result in significant
inefficiency. The main contribution of this paper is to introduce
a correlation-aware quantization strategy at the relay, which
better exploits the noise correlation and achieves to within
1
2 log2 3 bits of the capacity of the Gaussian relay channel
with correlated noises.

Theorem 1. The capacity of the three-node Gaussian relay
channel with correlated noises, as shown in Fig. 1, can be
achieved to within 1

2 log2 3 bits using a noisy-network-coding
strategy with independent Gaussian inputs X ∼ N (0, 1),
XR ∼ N (0, 1) and Gaussian quantization at the relay with
quantization variance q∗ = 2(1− ρ2z).

Proof: First, the capacity of the relay channel is upper
bounded by the cut-set bound, i.e.,

C = max
p(x,xR)

min{I(X,XR;Y ), I(X;Y, YR|XR)}

= max
ρx

min

{
1

2
log(1 + h2SD + h2RD + 2ρxhSDhRD),

1

2
log

(
1 +

(1− ρ2x)(h2SD + h2SR − 2ρzhSDhSR)

1− ρ2z

)}
≤ min

{
1

2
log(1 + h2SD + h2RD + 2hSDhRD),

1

2
log

(
1 +

h2SD + h2SR − 2ρzhSDhSR
1− ρ2z

)}
= min{RUB1, RUB2}, (4)

where ρx is the correlation between X and XR.
The achievable rate by noisy network coding or compress-

and-forward with joint decoding can be readily obtained from
[3, Theorem 1] and [7, Proposition 2]:

R = min{I(X,XR;Y )− I(YR; ŶR|X,XR, Y ),

I(X;Y, ŶR|XR)}
= min{R1, R2} (5)

for any distribution

p(x, xR, yR, ŷR) = p(x)p(xR)p(yR|x, xR)p(ŷR|xR, yR).

Substitute independent Gaussian distributions X ∼ N (0, 1)
and XR ∼ N (0, 1) into (5), and set ŶR = YR + e, where the
quantization noise e ∼ N (0, q) is independent with everything
else, we have

R1 = I(X,XR;Y )− I(YR; ŶR|X,XR, Y )

=
1

2
log(1 + h2SD + h2RD)−

1

2
log

(
1 +

1− ρ2z
q

)
, (6)

and

R2 = I(X;Y, ŶR|XR)
(a)
=

1

2
log(1 + h2SD)

+
1

2
log

(
q+ σ2

hSRX+ZR|hSDX+Z

q+ 1− ρ2z

)

=
1

2
log

(
1 +

q+ (q+ 1)h2SD + h2SR − 2ρzhSDhSR
1− ρ2z

)
−1

2
log

(
1 +

q

1− ρ2z

)
, (7)

where in (a) the conditional variance of hSRX + ZR given
hSDX + Z is calculated as

σ2
hSRX+ZR|hSDX+Z

= E[|hSRX + ZR|2]−
|E[(hSRX + ZR)(hSDX + Z)]|2

E[|hSDX + Z|2]

=
1− ρ2z + h2SR + h2SD − 2ρzhSRhSD

1 + h2SD
. (8)

Comparing R1 and the upper bound RUB1 in (4), we have

RUB1 −R1

=
1

2
log(1 + h2SD + h2RD + 2hSDhRD)

−1

2
log(1 + h2SD + h2RD) +

1

2
log

(
1 +

1− ρ2z
q

)
=

1

2
log

(
1 + h2SD + h2RD + 2hSDhRD

2 + 2h2SD + 2h2RD

)
+
1

2
log

(
1 +

1− ρ2z
q

)
+

1

2

<
1

2
log

(
1 +

1− ρ2z
q

)
+

1

2
. (9)

Comparing R2 and the upper bound RUB2, we have

RUB2 −R2

=
1

2
log

(
1 +

h2SD + h2SR − 2ρzhSDhSR
1− ρ2z

)
−1

2
log

(
1 +

q+ (q+ 1)h2SD + h2SR − 2ρzhSDhSR
1− ρ2z

)
+
1

2
log

(
1 +

q

1− ρ2z

)
<

1

2
log

(
1 +

q

1− ρ2z

)
. (10)

The gap between the cut-set bound C and the achievable rate
R is then upper bounded by the maximum of (9) and (10), i.e.

C −R ≤ min{RUB1, RUB2} −min{R1, R2}
≤ max{RUB1 −R1, RUB2 −R2}

< max

{
1

2
log

(
1 +

1− ρ2z
q

)
+

1

2
,

1

2
log

(
1 +

q

1− ρ2z

)}
. (11)
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The first term above monotonically decreases with q, while
the second term monotonically increases with q. To minimize
the maximum of the two terms, we set

1

2
log

(
1 +

1− ρ2z
q∗

)
+

1

2
=

1

2
log

(
1 +

q∗

1− ρ2z

)
, (12)

which results in q∗ = 2(1− ρ2z). Substituting q∗ into (11), we
have C −R < 1

2 log2 3 = 0.7925.

In addition, it can be shown that the conventional compress-
and-forward rate is also within the same constant gap to
capacity. To prove this directly would have been quite in-
volved. (See [2] for the computation of the gap for the case of
ρz = 0.) Instead, we obtain the result as a direct consequence
of Theorem 1.

Corollary 1. The following rate, which is achieved by the clas-
sic compress-and-forward strategy on the three-node Gaussian
relay channel with correlated noises shown in Fig. 1:

RCF =
1

2
log

(
1 + h2SD +

(hSR − ρzhSD)2

1− ρ2z + qc

)
, (13)

where

qc =
(1− ρ2z)(1 + h2SD) + (hSR − ρzhSD)2

h2RD
, (14)

is within 1
2 log2 3 bits to the capacity.

Proof: The rate expression RCF for the correlated-noise
Gaussian relay channel has been obtained in [4, Proposi-
tion 5]. The derivation is based on the classic compress-
and-forward rate for the relay channel by Cover and El
Gamal [6, Theorem 6], which is RCF = I(X; ŶR, Y |XR)
subject to I(XR;Y ) ≥ I(YR; ŶR|XR, Y ) for some joint dis-
tribution p(x)p(xR)p(yR|x, xR)p(ŷR|xR, yR). Using the same
signaling scheme as in Theorem 1, i.e., X ∼ N (0, 1) and
XR ∼ N (0, 1) are independent, and ŶR = YR + e, where
e ∼ N (0, qc) is chosen to satisfy the relay-destination rate
constraint, we obtain (13).

In the following, we prove the constant-gap result for
the compress-and-forward rate by showing that RCF in
(13) is greater than the noisy-network-coding rate, i.e.,
RCF ≥ min(R1, R2), where R1 and R2 are as in
(6) and (7) respectively. Substituting qc in (14) as q
in R1 and R2, it is easy to verify that R1(qc) =
R2(qc) = RCF . Since R1 increases with q and R2 de-
creases with q, we have RCF = min{R1(qc), R2(qc)} =
maxq min{R1(q), R2(q)} ≥ min{R1(q

∗), R2(q
∗)} for any

q∗ and in particular for q∗ = 2(1−ρ2z). Since it has been shown
in Theorem 1 that min{R1(q

∗), R2(q
∗)} is within 1

2 log 3 bits
of the cut-set upper bound, so is RCF .

IV. SUBOPTIMALITY OF DECODE-AND-FORWARD AND
SINGLE-TAP AMPLIFY-AND-FORWARD

The decode-and-forward and the single-tap amplify-and-
forward strategies have been shown to achieve to within a
constant gap to the capacity of the Gaussian relay channel
with uncorrelated noises [1], [2]. In this section, we show that
this is no longer the case when noises are correlated.

A. Decode-and-Forward

Consider a decode-and-forward strategy as described in [1,
Appendix A], in which when the source-to-relay link is weaker
than the source-to-destination link, i.e., hSR ≤ hSD, the relay
is simply ignored, otherwise the relay decodes and forwards a
bin index to the destination as in the original scheme of [6].
The following rate is achievable:

RDF = max

{
1

2
log(1 + h2SD),

min

{
1

2
log(1 + h2SR),

1

2
log(1 + h2SD + h2RD)

}}
(15)

In the extreme scenario where ρz = 1 and

h2RD � h2SR � h2SD � 1, (16)

the above decode-and-forward rate (15) becomes

RDF =
1

2
log(1 + h2SR). (17)

Meanwhile, when ρz = 1, the cut-set bound (4) becomes

C =
1

2
log(1 + h2SD + h2RD + 2hSDhRD). (18)

Comparing (17) with (18), we observe that

C −RDF =
1

2
log

(
1 + h2SD + h2RD + 2hSDhRD

1 + h2SR

)
→ 1

2
log

(
h2RD
h2SR

)
, (19)

which is unbounded in the asymptotic regime (16). This is not
unexpected, because the decoding at the relay eliminates the
noise. Therefore, noise correlation is not exploited.

B. Single-Tap Amplify-and-Forward

In the single-tap amplify-and-forward scheme, the relay
scales the current observation and forwards it to the destination
in the next time instance, i.e.,

XR[i] = α(hSRX[i− 1] + ZR[i− 1]), (20)

where α ≤ 1√
1+h2

SR

is chosen to satisfy the power constraint

at the relay. Since Y [i] = hSDX[i] + hRDXR[i] + Z[i], the
relay channel is now converted into a single-tap inter-symbol-
interference (ISI) channel:

Y [i] = hSDX[i]+αhRDhSRX[i−1]+Z[i]+αhRDZR[i−1].
(21)

The capacity of the Gaussian ISI channel is given by

RAF = max
S(ω)

1

2π

∫ 2π

0

1

2
log

(
1 + S(ω)

|H(ω)|2

N(ω)

)
dω, (22)

subject to

1

2π

∫ 2π

0

S(ω)dω ≤ 1, and S(ω) ≥ 0, 0 ≤ ω ≤ 2π, (23)

where N(ω) = 1 + α2h2RD + 2ρzαhRD cos(ω) is the
power spectrum density of the noise, and H(ω) = hSD +
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αhRDhSRe
jω is the Fourier transform of the channel coeffi-

cients, and S(ω) =
(
λ− N(ω)

|H(ω)|2

)+
is the water-filling power

allocation over the frequencies.
Consider again the case of ρz = 1 and the asymptotic

regime of (16), i.e. h2RD � h2SR � h2SD � 1. In this high
signal-to-noise ratio (SNR) regime, it is easy to verify that
the water-filling power spectrum converges to an equal power
allocation, i.e., S(ω) = 1, 0 ≤ ω ≤ 2π. Substituting N(ω),
H(ω) and S(ω) = 1 into (22) and using table of integrals,
after some algebra, it is possible to show that

RAF ≤
1

2
log(2 + h2SR + h2SD).

Comparing the above with the cut-set bound, we see that

C −RAF ≥ 1

2
log

(
1 + h2SD + h2RD + 2hSDhRD

2 + h2SR + h2SD

)
→ 1

2
log

(
h2RD
h2SR

)
(24)

in the asymptotic regime of (16), which is unbounded.

V. NUMERICAL SIMULATION

This section numerically compares the cut-set upper bound
and the achievable rates of different relaying schemes. Here,
the noisy-network-coding rate is computed with q∗ = 2(1 −
ρ2z). We consider two examples: Fig. 2 shows the case for
h2SD = 20dB, h2SR = 40dB and h2RD = 60dB, corresponding
to an extreme scenario of h2RD � h2SR � h2SD � 1. Fig. 3
shows the case for h2SD = 5dB, h2SR = 10dB, and h2RD =
10dB. It is clear that in both cases, compress-and-forward is
always better than the noisy network coding scheme with the
specific q∗, and both are within a constant gap to the cut-set
upper bound for all values of ρz .

The decode-and-forward rate is always independent of ρz .
In the asymptotic regime as shown in Fig. 2, the single-
tap amplify-and-forward rate is almost independent of ρz
as well, and it coincides with the decode-and-forward rate.
Both can have an unbounded gap to the cut-set bound as
h2RD → ∞ and ρz → ±1. Compress-and-forward, on the
other hand, closely tracks the cut-set bound. (Note that some
of the above observations do not necessarily hold in the non-
asymptotic SNR regime as shown in Fig. 3.) The noisy-
network-coding scheme, although not as good as compress-
and-forward, nevertheless is always within a constant gap to
the cut-set bound.

It is interesting to see that the noisy-network-coding rate
resembles the shape of the cut-set upper bound as shown
in both Fig. 2 and Fig. 3. It is also interesting to note that
the decode-and-forward curve touches the cut-set bound at a
particular value of ρz . This is because at this value of ρz , the
relay channel becomes degraded [4, Theorem 1].

VI. CONCLUSION

This paper investigates different relaying strategies for the
three-node Gaussian relay channel with correlated noises.
It is shown that both the proposed correlation-aware noisy-
network-coding scheme and the conventional compress-and-
forward relaying scheme can achieve to within a constant gap
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to the capacity, while the decode-and-forward scheme and the
single-tap amplify-and-forward scheme cannot.
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