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Abstract— Achieving optimal transmission throughput in data
networks is known as a fundamental but hard problem. The
situation is exacerbated in multi-hop wireless networks due to
the interference among local wireless transmissions. In this paper,
we propose a general modeling and solution framework for
the throughput optimization problem in wireless networks. In
our framework, data routing, wireless medium contention and
network coding are jointly considered to achieve the optimal
network performance. The primal-dual solution method in the
framework represents a cross-layer optimization approach. It
decomposes the original problem into data routing sub-problems
at the network layer, and power allocation sub-problems at
the physical layer. Various effective solutions are discussed for
each sub-problem, verifying that our framework may handle the
throughput optimization problem in an efficient and distributed
fashion for a broad range of wireless network scenarios.

I. INTRODUCTION

Multi-hop wireless networks consist of wireless nodes that
communicate with each other by relaying data flows over
multiple hops, without infrastructure support. Due to the
broadcast nature of omni-directional antennas, geographically
nearby transmissions interfere with each other.

In this paper, we study the problem of achieving optimal
transmission throughput for multiple concurrent data sessions
in multi-hop wireless networks. As unicast, broadcast and
group communication sessions may all be viewed as (or
transformed into) multicast sessions [1], we assume that a
data session is a multicast session without loss of generality.
A desirable solution to the problem of achieving optimal
transmission throughput includes a routing strategy of data
flows at the network layer, as well as a power allocation
scheme that leads to high capacity at the physical layer.

As the main original contribution of this paper, we propose a
general framework to model and solve the optimal throughput
problem in wireless networks. At a high level, our framework
maximizes the overall throughput subject to three groups of
constraints: (1) dependence of overall throughput on per-link
data flow rates, (2) dependence of per-link flow rates on
link capacities, and (3) dependence of link capacities on per-
node radio power levels. We present a general primal-dual
method that iteratively solves two disjoint sub-problems and
converges to the optimal solution of the original problem.
The first sub-problem is a multi-hop flow routing problem at
the network layer, and the second sub-problem is a power
allocation problem at the physical layer. We further illustrate
how each sub-problem can be solved efficiently under different

wireless network scenarios. We also take different algorithmic
perspectives: at the network layer, we discuss the problem with
or without network coding; at the physical layer, we consider
the dual optimization method, geometric programming, as well
as game theoretic designs.

The general framework proposed in this paper represents
a cross-layer optimization strategy. It balances the demand
and supply of link bandwidth at the network and the physical
layers, respectively. It also provides an optimal flow routing
scheme and a corresponding optimal power allocation scheme
in such a balanced state. Important properties and highlights
of our solution framework are as follows.

• Comprehensiveness: It provides a comprehensive ap-
proach for system designers to incorporate networking
factors from different layers into a joint optimization
problem. Such joint consideration of network coding,
data routing, and wireless interference is indeed necessary
to approach optimal performance in multi-hop wireless
networks.

• “Divide and conquer” strategies: It explores the under-
lying modular structure of the joint optimization problem
from the perspective of primal-dual solutions. It applies
the classic technique, Lagrange relaxation combined with
subgradient optimization, to decompose the original com-
plex problem into smaller sub-problems that are easier to
solve. Each sub-problem resides in only one networking
layer, it therefore provides a clear justification for layered
protocol design.

• Flexibility: How each sub-problem is solved depends on
the specific model and the available solution techniques,
and is independent of the general framework that we
propose. As new advances occur in networking technolo-
gies or in optimization algorithm design, the module for
solving the corresponding sub-problem in our framework
can be easily replaced to reflect such advances and to
achieve better performance. As examples, the module for
flow routing may be implemented as multicommodity
flow routing, tree packing and network coding; and the
module for power allocation can be computed with the
dual optimization method, geometrical programming, and
a cooperative selfish game.

• Effectiveness: Our solution framework transforms the
overall throughput optimization into a sequence of sim-
pler sub-problems. As long as the computation of each



individual sub-problem is optimal, efficient and/or dis-
tributed, the overall solution is guaranteed to be opti-
mal, efficient, and/or distributed, respectively. We shall
illustrate how optimality can be achieved or closely
approached for each sub-problem, in an efficient and
distributed fashion.

The remainder of this paper is organized as follows. We
first discuss related work in Section II. In Section III, we
propose the joint optimization framework and the layering
approach, together with an efficient primal-dual algorithm to
solve the problem. In Section IV, we discuss the module
structure of sub-problems, point out several new techniques in
network and physical layers, and show how the sub-problems
are incorporated in the overall framework. We then present an
example to illustrate the main concept in Section V. Finally, we
discuss the limitations and extensions of this paper in Section
VI, and conclude in Section VII.

II. RELATED WORK

In the general model of data networks, recent research in
information theory discovers that routing alone is not sufficient
to achieve maximum information transmission rates [2], [3].
Rather, encoding and decoding operations at relay nodes in
addition to the sender and receivers are in general necessary
in an optimal transmission strategy. Such coding operations
are referred to as network coding. The pioneering work by
Ahlswede, Cai, Li and Yeung [2] and Koetter and Medard
[3] proves that, in a directed network with network coding,
a multicast rate is feasible if and only if it is feasible for a
unicast from the sender to each receiver. Li, Yeung and Cai
[4] then shows that linear coding usually suffices in achieving
the maximum rate.

With the assistance of network coding, the problem of
achieving optimal throughput has been studied in undirected
networks where each link has a known capacity, shared by
flows in both directions. As shown by Li et al [1], [5], the
problem of computing optimal throughput can be formulated
as a linear optimization problem, and distributed algorithms
can be designed to efficiently solve the problem by applying
Lagrange relaxation and subgradient optimization. However,
the assumption of fixed link capacities is not realistic in
multi-hop wireless networks, where link capacities are subject
to interference from other links in the neighborhood. If we
assume that two transmissions can be simultaneously active
if and only if neither node in one transmission is within
the communication range of the other transmission [6] (also
referred to as the logical interference model), then even
optimizing link scheduling for a set of fixed multi-hop flows is
NP-hard, since it essentially corresponds to the graph coloring
problem.

A main contribution of this paper is to take the physical
layer interference into account when solving the optimal
throughput problem for multi-hop wireless networks. Towards
this objective, we draw from previous studies related to
power control in wireless networks and show how physical
layer models can be incorporated in the overall problem of
optimizing throughput, with the assistance of network coding.

In particular, we take advantage of recent progress in solving
non-convex problems using a dual optimization method as
proposed by Yu et al [7] for Orthogonal Frequency Division
Multiplex (OFDM) systems in which the non-convex problem
is solved efficiently and globally in the dual domain, and the
geometric programming approach proposed by Chiang [8] for
Code Division Multiple Access (CDMA) systems in which the
non-convex problem is transformed into a convex one under
the assumption of a high signal to interference and noise ratio
(SINR). Finally, we also propose an approximate but near-
optimal solution for the interference channel based on game
theory.

The main technique used in this paper is the method of
dual decomposition for convex optimization problems. The
dual decomposition technique is related to the duality analysis
of TCP as a flow control protocol by Low [9] and Wang et al
[10], in which network congestion parameters are interpreted
as primal and dual optimization variables and the TCP protocol
is interpreted as a distributed primal-dual algorithm. Our work
is also related to the extension of the above work to multi-
hop wireless networks by Chiang [8], in which power levels
and TCP window sizes are jointly optimized, and a dual
variable is used as a means for cross-layer optimization. In
a related work, Johansson, Xiao, and Boyd have also carried
out a similar convex optimization approach to jointly perform
routing and resource allocation in wireless CDMA networks
[11], [12], where a high SINR is assumed in order to guarantee
convexity. In our previous work [13], we have also studied a
dual method for the joint source coding, routing, and power
allocation problem for sensor networks, where the focus is a
lossy source coding problem in the application layer. All of
the above work treat the multi-session unicast problem only.
The main idea of the present work is to propose a similar
framework for multicast problems in a network coding context.

For wireless multicast in ad hoc networks, Wu et al [14]
studied the issue of network planning and solved an energy
minimization problem with centralized control. They also
adopt SINR to model contention at the physical layer, and
their transmission plan involves a time sharing scheme among
a set of selected power allocation states. Both the focus and
solution approaches of our paper are different as compared to
[14]. We target maximum throughput instead of minimum cost,
and present a general solution framework that decomposes the
optimization into different layers. We also target distributed
solutions and employ physical layer models, which directly
connects capacity rates to power allocation.

III. A JOINT OPTIMIZATION FRAMEWORK

We now present a general framework to model and solve
the problem of optimizing throughput in multi-hop wire-
less networks. We first give a high-level formulation of the
optimization problem, which involves variables from both
the network layer and the physical layer. We then show
that Lagrange relaxation and subgradient optimization can be
applied to decompose such an overall optimization problem
into a sequence of smaller sub-problems, each only involving
variables from either the network layer or the physical layer.
Interactions between the two sub-problems are then discussed.



A. General Framework of Joint Optimization

The formulation of the throughput optimization problem is
based on the following facts. First, throughput is realized by
routing data flows from senders to receivers, therefore the
achievable throughput for each data session is decided by
the corresponding data flows of that session. Second, at each
transmission link, the aggregated data flow rate can’t exceed
the effective capacity of that link. Third, the achievable link
capacity is decided by SINR, which in turn is decided by the
power level at all the senders.

Let G = (V,E) be the network topology. Let S be the set of
multiple data sessions supported in the network. Let r = {ri}
be the set of multicast rates for each session i ∈ S. Fix r,
let N (r) be the set of network flow rates that are needed to
support r. The flow rates f is a vector {f i

l }, where i denotes
the session index i ∈ S and l denotes the link index l ∈ E.
Let pmax be the set of power constraints on each node in V .
Let C(pmax) be the set of achievable rates c = {cl} that the
physical layer can support on each link l ∈ E.

The throughput optimization problem can now be formu-
lated as:

max U(r) (1)

s.t. f ∈ N (r)

c ∈ C(pmax)∑

i∈S

f i
l ≤ cl, ∀l ∈ E

where we seek to maximize some concave utility function of
the throughput vector U(r). For example, a utility that leads
to proportional fairness is U(r) =

∑
i Ui(r

i) =
∑

i log(ri).
The constraint f ∈ N (r) models the inter-dependence of
achievable throughput r and the data flow routing scheme f .
The constraint c ∈ C(pmax) models the inter-dependence of
link capacity vector c on the node power constraint pmax. The
constraint

∑
i f i

l ≤ cl reflects the fact that the aggregated flow
rate at each link is bounded by link capacity. Here, i is the
index of data sessions, and l is the index of links.

The detailed characterization of the regions N (r) and
C(pmax) are independent of our general formulation and will
be discussed in the next section. We now proceed to investigate
solution techniques that are applicable to our general problem
formulation.

B. Decomposing the Problem

When both N (r) and C(pmax) are convex regions, general
convex optimization methods can be used to solve the overall
optimization problem (1). However, such a solution does not
take advantage of the special problem structure and it in
general requires global information to be collected at a central
point of computation. In this paper, we instead propose a
general solution framework, within which the original problem
is decomposed into smaller sub-problems, each of which can
be solved efficiently and distributively. We start by relaxing
the link capacity constraints

∑
i f i

l ≤ cl and introduce prices

into the objective function:

L = U(r) +
∑

l

λl

[
cl −

∑

i

f i
l

]
. (2)

Observe that the maximization of the Lagrangian above now
consists of two sets of variables: network layer variables
(f , r), and physical layer variables (p, c), where p is a
set of link power constrained by node power budget pmax.
More specifically, the Lagrangian optimization problem now
decouples into two disjoint parts. The network layer part is a
data flow routing problem:

max U(r) −
∑

l

λl

∑

i

f i
l (3)

s.t. f ∈ N (r)

The physical layer part is a power allocation problem:

max
∑

l

λlcl (4)

s.t. c ∈ C(pmax)

Thus, the optimization framework naturally provides a layering
approach to the wireless throughput optimization problem.
The global maximization problem decomposes into two parts:
routing at the network layer and power allocation at the
physical layer. The power allocation problem ensures that
the maximal capacity is provided in individual network links,
while the routing problem ensures that underlying link support
is efficiently utilized to maximize the multicast rates.

The decoupling of the network optimization problem also
reveals that cross-layer design can be achieved in a theoret-
ically optimal way. The dual variable λ plays a key role in
coordinating the network layer “demand” and physical layer
“supply”. In particular, the lth component of λ (λl) can be
interpreted as the rate cost in link l. A higher value of λl

signals to the underlying physical layer that more resources
should be devoted to transporting the traffic in link l. At
the same time, it signals to the upper network layer that
transporting bits in link l is expensive and it provides incentive
for the network layer to find alternative routes for traffic.

The key requirement that allows the decoupling of the
network optimization problem into routing and resource allo-
cation is the underlying convexity structure of the problem.
Below, we first provide a justification for convexity, then
propose a primal-dual algorithm that can be used to solve the
joint network optimization problem efficiently.

C. The Role of Convexity

We start by observing that at the physical layer, C(pmax) can
always be made a convex region and C(pmax) can always be
made a convex function of pmax via time sharing. If two sets
of rates are both achievable under the same power constraint,
then their linear combination must also be achievable by
simply dividing the frequency (or time) into two sub-channels
and transmitting using the two different strategies in the two
sub-channels.

From a network routing point of view, the technique of
network coding resolves the competition among flows by



introducing conceptual flows [1]. The network coded routing
region specifies three kinds of linear constraints for conceptual
flows: (a) the maximum flow rate must be upper bounded
by the link capacity; (b) the law of flow conservation, i.e.,
the incoming conceptual flow rate is equal to the outgoing
conceptual flow rate at a relay node for every given source-
sink pair; and (c) the multicast rate must be less than or equal
to the rate for each source-sink pair in every session. Hence,
it is obvious that the constraint set of network coded routing
region is convex.

D. The Primal-Dual Solution Framework

A direct implication of the convexity of the capacity region
C(pmax) and the data routing region N (r) is that the joint
network optimization problem (1) can be solved efficiently.
Further, as strong duality holds, the optimization problem
(1) can be solved via its dual. As the dual problem has a
natural decomposition, it may be solved by solving its two sub-
problems (3) and (4) individually and by updating the shadow
price λl in succession.

More specifically, we now propose the following primal-
dual algorithm that solves the entire network optimization
problem:

Algorithm 1: Primal-Dual Algorithm:

1) Initialize λ
(0)
l

2) In primal domain, given λ
(t)
l , solve the following sub-

problems:

max
f , r

{
U(r) −

∑

l

λl

∑

i

f i
l | f ∈ N (r)

}
(5)

max
p, c

{∑

l

λlcl | c ∈ C(pmax)
}

(6)

3) In dual domain, update λ using the following rule:

λ
(t+1)
l = λ

(t)
l + ν

(t)
l (cl −

∑

i

f i
l ) (7)

4) Return to step 2 until convergence.

Theorem 1: Algorithm 1 always converges to the global
optimum of the overall network optimization problem (1),
provided that the step sizes ν(t) is chosen to be sufficiently
small.

Proof: We outline the proof here. The crucial ingredient
that validates Algorithm 1 is convexity. The convexity of N (r)
and C(pmax) ensures an efficient numerical solution for the
network optimization problem (1). Define the dual objective
function

g(λ) = max
r,f ,p,c

L(r, f ,p, c, λ). (8)

The maximization above can be decomposed into two sub-
problems (5) (6). The solutions of the two sub-problems allow
g(λ) to be evaluated.

Now, by strong duality, the overall network optimization
problem (1) is solved by the following dual minimization
problem:

min
λ

g(λ) (9)

It remains to show that the update steps (7) solve the dual
minimization problem. This is due to the fact that the update
steps are subgradient updates for λ. It is not difficult to show
that (cl−

∑
i f i

l ) are subgradients for λl. Thus, as long as step
sizes ν

(t)
l are chosen to be sufficiently small, the subgradient

update eventually converges, and it converges to the global
optimum of the overall network optimization problem.

Note that the primal-dual algorithm can be implemented
in a distributed fashion, if the sub-problems have distributed
solutions. This is true because in (7), the update of dual
variable λl in the lth link only requires the local capacity cl

and the rates of local flows
∑

i f i
l .

IV. SUB-PROBLEM MODULES

We have so far proposed a primal-dual solution framework
to solve the problem of achieving optimal throughput in multi-
hop wireless networks using joint optimization across the net-
work and the physical layers. It remains to show how routing
sub-problem at the network layer and the power allocation
sub-program at the physical layer are effectively solved. We
investigate different alternative solutions in different network
scenarios. At the network layer, we examine solutions with
or without the assumption of network coding. At the physical
layer, we discuss different algorithmic perspectives, including
dual optimization, geometric programming, and cooperative
selfish games. These alternatives consist of modules to be
readily plugged into the general framework that we have
proposed.

A. Network Layer Modules

1) Routing based on Multicommodity Flows: When net-
work coding is not considered and data sessions are unicast
sessions, the network layer is naturally modeled as a mul-
ticommodity flow problem. The first group of constraints in
our general framework, which characterizes the dependence of
overall throughput on link flow rates, is then a standard mul-
ticommodity flow polytope. The corresponding data routing
sub-problem at the network layer can be solved using available
solution techniques for multicommodity flow problems.

2) Routing based on Tree Packing: When network coding
is not considered and data sessions are multicast or broadcast
sessions, routing is achieved by data forwarding and repli-
cation at each wireless node. With these assumptions, each
atomic data flow propagates along a tree that spans every node
in the data session. The maximum achievable throughput can
be computed by finding the maximum number of pairwise
capacity-disjoint trees, in each of which the multicast group
remains connected. Such optimization has a straightforward
linear programming formulation with an exponential number
of tree capacity variables. In the case of broadcast sessions,
such a problem corresponds to the spanning tree packing
problem, in which we can work on the dual and employ
minimum spanning tree algorithms as the separation oracle.
In the case of multicast sessions, the problem corresponds to
the Steiner tree packing problem, where this approach does
not work effectively. This is due to the fact that we need to
solve the minimum Steiner tree problem in the dual, which is
exactly as hard as the Steiner tree packing problem itself [15].



3) Multicast Routing with Network Coding: With the ad-
vantages of network coding [2], we can model the routing
problem at the network layer as follows:

max
r,f ,e

U(r) −
∑

l

λl

∑

i

f i
l (10)

s.t. ri ≤
∑

l∈I(T i
j
)

e
i,j
l , ∀i,∀j,∀ T i

j ∈ V

e
i,j
l ≤ f i

l , ∀i,∀j,∀ l ∈ E∑

l∈O(n)

e
i,j
l =

∑

l′∈I(n)

e
i,j
l′ , ∀i,∀j,∀ n ∈ V \{si, T i

j}

f i
l ≥ 0, e

i,j
l ≥ 0, ri ≥ 0

The first inequality represents the constraint that the ith
session multicast rate ri is less than or equal to the sum of
all the conceptual flow rates from source si to each of its
jth destination T i

j . Here, e
i,j
l is the conceptual flow rate on

link l in the ith multicast session to its jth destination T i
j . The

second inequality means that the actual flow rate f i
l of session

i on link l is the maximum of all the conceptual flows from
source to destinations in that session. It is the advantage of
network coding that allows us to consider the maximum, rather
than the summation, of the conceptual flow rates. The third
equality constraint represents the law of flow conservation for
conceptual flows, where I(n) is defined as the set of links that
are incoming to node n; and O(n) is the set of links that are
outgoing from node n.

Theorem 2: For a data network with multiple multicast
sessions, the maximum utility and its corresponding optimal
routing strategy can be computed efficiently and in a dis-
tributed fashion.

Proof: First, the utility function is a concave function.
Second, it is easy to prove that the network coding region
constraint (linear constraint) is a convex set. Therefore, solving
the sub-problem (10) is a convex optimization problem, which
can be solved efficiently. A distributed solution is also possible
by further relaxation. For more detailed discussions, refer to
the conceptual flow approach presented in [1] [5].

B. Physical Layer Modules

Interference management is one of the main challenges in
physical layer design of wireless networks. A key concept
in physical layer is the capacity region (rigorously speaking,
the achievable rate region), which characterizes a tradeoff
between achievable rates at different links. The capacity region
optimization problem in the physical layer may be formulated
as follows

max
p

∑

l

λlcl (11)

s.t. cl = log (1 + SINRl) ∀l

SINRl =
Gllpl∑

j 6=l Gljpj + σ2
l

∀l

∑

l∈O(n)

pl ≤ pn,max ∀n

where cl is the capacity of link l, SINRl is the signal to
interference and noise ratio of link l, Gll, pl, and σ2

l are the
link gain, power, and noise, respectively. Glj is the interference
gain from link j to link l. Each node has a power budget
pn,max.

Because of the interference, the power allocation problem
(11) is a non-convex optimization problem which is inherently
difficult to solve. In this subsection, we discuss three recent
techniques to ease the way of characterizing the feasible
capacity region: the dual optimization method, geometric
programming, and the game theoretic approach.

1) Dual Optimization Method: The main idea of the dual
optimization method [7] is to recognize that although the
constraints of (11) are not convex by itself, the time-sharing
version of these constraints always is. Further, the time-sharing
version of the problem can sometimes be more efficiently
solved in the dual domain by solving the Lagrangian dual
problem

g(µ) = max
p

∑

l

λlcl +
∑

n

µn


pn,max −

∑

l∈O(n)

pl


 ,

for each fixed µ and by adjusting µ via a subgradient update.
Optimizing for g(µ), although still not trivial, is often easier
than solving the original problem, as g(µ) is always convex.
(The exact evaluation of g(µ) may still take exponential
complexity. However, efficient and sub-optimal algorithms can
often be used to evaluate g(µ) approximately.) Under the time
(frequency) sharing condition, the minimal value of g(µ) over
all positive µ’s is equal to the optimal solution of (11)

min
µ

g(µ) = max
p

∑

l

λlcl

As in practical physical-layer system design, time-sharing
can often be implemented either directly or via frequency
sharing using (for example with OFDM modulation), the
above method gives an efficient way to solve the capacity
region maximization problem (11).

2) Geometric Programming: Recent developments in ge-
ometric programming show that, in high SINR scenarios,
solving the problem (11) can be efficiently accomplished by
convex programming [8].

The idea is to first approximate the link capacity rate cl =
log(1+SINRl) ≈ log(SINRl) if the SINR is much larger than
1. Then by logarithmic transformation of power vector p̃l =
log(pl), the transformed problem (12) is a convex function
over variables p̃:

max
p̃

:
∑

l

λlc̃l (12)

s.t. : c̃l = log
(
˜SINRl

)
∀l

˜SINRl =
Glle

p̃l

∑
j 6=l Glje

p̃
j + σ2

l

∀l

∑

l∈O(n)

ep̃
l ≤ p̃n,max, ∀l,∀n



Furthermore, Chiang [8] has proposed a distributed power
allocation algorithm with gradient step size κ as follows:

p
(t+1)
l = p

(t)
l + κ


 λl

p
(t)
l

−
∑

s6=l

λsGls

Gssp
(t)
s

SINR(t)
s




3) The Game Theoretic Approach: In this section, we
explore ways to approximate the solutions of the non-convex
achievable rate maximization problem by game theory. In
a power control game, each link is modeled as a player
with an aim of maximizing its utility function. The main
idea here is to design a set of utility functions so that the
competitive equilibrium of the game is approximately the
global optimum. As reaching the competitive equilibrium of
a game is typically computationally efficient and amenable to
distributed implementation, this gives us an effective means
of approximately solving the physical layer power control
problem. This type of games is inherently different from
traditional selfish games in that by pretending to be selfish,
nodes actually help achieve the joint social welfare. Such a
game is referred to as a cooperative selfish game.

In conventional game theoretical approaches for power
control [16], each link uses its own achievable rate as its
utility function (while treating all other users as interference).
Competitive equilibria in such a game may not correspond
to desirable operating points, especially when the interference
level is high. This is typified by the well-known prisoner’s
dilemma. The main idea of this section is to modify the utility
function of each link to include not only its own achievable
rate but also the detrimental effect of the interference each link
causes on other links. Under these modified fictitious utility
functions, each link then has an incentive to settle on a power
level that strikes a balance between maximizing its own rate
and minimizing the interference caused to others.

In a distributed implementation, the amount of interference
caused by each link has to be estimated by its neighbors.
This motivates us to propose a message-passing mechanism
with which the interference information can be communicated
between the links via a side channel. Mathematically, we
propose the following utility function for each link l:

Ql = λllog

(
1 +

Gllpl∑
j 6=k Gljpj + σ2

l

)
− mlpl − µnpl (13)

where ml is the dual variable summarizing the effect of
interference from all other links and µn is the dual variable that
indicates the price of transmitter power at node n. A sensible
choice for ml is the derivative

ml = −
∂
∑

s6=l cs

∂pl

. (14)

In other words, ml is the rate at which other users’ achievable
data rates decrease with an additional amount of power. The
power price µn reflects how tight the resource at node n

is being utilized by its outgoing links under the constraint∑
l∈O(n) pl ≤ pn,max.
The following algorithm implements this game theoretical

power control scheme where each link player selfishly maxi-
mizes Ql, while continuously updating the messages.

Algorithm 2: Message Passing Game Algorithm

1) Initialize p(0), m(0), µ(0). Set t = 0.
2) Set p(τ0) = p(t). Set i = 0, iteratively update p(τi) as

follows:

p
(τi+1)
l =

λl

m
(t)
l + µ

(t)
n

−
∑

j 6=l

Glj

Gll

p
(τi)
j −

σ2
l

Gll

Repeat until p(τi) converges. Set p(t+1) = p(τi).
3) Update price µn via subgradient

µ(t+1)
n = µ(t)

n + γ(t)
n


 ∑

l∈O(n)

p
(t)
l − pn,max




4) Update the message ml using (14)

m
(t+1)
l =

∑

s6=l

Glsλs

SINR
(t+1)
s

Gssp
(t+1)
s

SINR
(t+1)
s

1 + SINR(t+1)
s

5) Repeat (2-4) until convergence.

The power update in steps (2) is based on the following. At
each step, each player tries to maximize its own utility Ql

while assuming the power levels for all other players and the
messages are fixed. The expression for optimal pl is obtained
by setting the derivative Ql with respect to pl to zero. Such
a locally optimal pl strikes a balance between maximizing its
own rate and minimizing its effect for other users (which is
taken into account via ml). For example, a large value for ml

indicates that link l is producing severe interference to other
links. This is reflected in the power update as a large ml leads
to a lower pl. Similarly, the value of the pricing variable µn

indicates the tightness of the per-node power constraint. A high
value for µn signals that the supply for power is tight and it
entices link l to reduce its power. Finally, the demand for link
capacity from the upper layer is reflected in the network layer
shadow price λl. A large value for λl indicates that a higher
capacity rate in the lth link is needed to support upper layer
traffic, and it prompts the physical layer to increase its power.

Although each player appears to be selfish in maximizing
its own utility only, because the utility function incorporates
social welfare, the Nash equilibrium of this game is in fact a
cooperative social optimum.

The message-passing algorithm can be implemented in a
distributed fashion. This is because the messages can be locally
collected and broadcast to the neighbors of each link. Although
this power control game does not necessarily converges to
the global optimum, experimental evidence suggests that it
performs very well in practice. Finally, we have the following
result on the conditions for convergence.

Theorem 3: Algorithm 2 always converges, and it converges
to a stable Nash equilibrium of the message passing game, if
the absolute value of eigenvalues of dynamics stability matrix
are less than one.

Due to space constraints, a detailed analysis on the exis-
tence, uniqueness, stability and efficiency loss for the Nash
equilibrium in this message passing game is omitted.
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V. ILLUSTRATIVE EXAMPLES

We illustrate an example of a single session multicast in
Fig. 1. The source S attempts to establish a session with
maximum multicast throughput to the three sinks T1, T2, T3,
with network coding. The model for the physical layer is
an interference channel. An OFDM transmission scheme is
simulated. The channel gain and interference are randomly
generated. We define interference degree (ID) as the average
ratio between the desired link gain and the sum of all interfer-
ence gains. Both the low interference case (ID = 12dB) and
the high interference case (ID = −2dB) are investigated.

We use the proposed primal-dual algorithm to achieve the
optimal solution for the joint routing and power allocation
problem (1). Specifically, a distributed message passing game
algorithm is employed in order to find the achievable rate
region.

Fig. 2 illustrates the multicast rate maximization process.
In both high and low interference cases, the multicast rate
continuously converges to the optimal solution. However, the
convergence speed is different. Convergence is much faster
in the low interference scenario (i.e., 60 iterations) than in
high interference scenario (i.e., 200 iterations). This is because
that in the low interference case, it is not very important for
the links to exchange messages in order to arrive at a good
tradeoff. Instead, each link simply maximizes its own link
capacity to support the network traffic.

The convergence process for the cross-layer dual variables is
illustrated in Fig. 3. The dual variables (shadow price) control
the inter-layer interface so that both routing in the network
layer and power allocation in the physical layer can reach an
optimal matching point. As the shadow prices converge, the
entire system reaches an optimal solution.

Fig. 4 shows the matching process between the network
layer flows and the physical layer rates. At the beginning, the
network flows oscillate in order to find a good routing strategy
for each set of physical-layer rates. At the same time, physical
layer rates increase and decrease among themselves in order
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to support network layer traffic. This process is coordinated
by shadow prices as shown in Fig. 3. Eventually, the network
flows and capacity rates agree. This solution is optimal, in the
sense that the physical layer comes up with the best resource
allocation while the network layer routes the best paths from
the source to multiple sinks. Together, the multicast rate utility
function is maximized.

For example, for the network in Fig. 1, the final solution
in the high interference case, network flows in each link are
f1 = f2 = 1.98, f3 = .... = f18 = 0.99; the capacity rates
are c1 = c2 = 1.98, c3 = .... = c18 = 0.99; and the multicast
rate is r = 2.97. Finally, it is interesting to point out that
our algorithm is energy efficient because there is no wasted
capacity rates in the system. All capacity rates exactly support
the network flow (fl = cl). Consequently, all the shadow
prices are non-zero, which means the capacity constraints are
all active in the original problem (1).

This solution has a max-flow min-cut interpretation. If we
normalize the throughput, the optimal flow and capacity rates
will all be one unit except for link 1 and 2, where it is
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two units. As we can see from the optimization solution, the
source can send three units of information in total to each
sink, where the max-flow rate is exactly equal to the min-cut
bound as shown in Fig. 5. We further show a network coding
scheme to achieve this. In our example, source S has three
units (a, b, c) to send, and each of the sinks (T1, T2, T3) can
exactly receive them, by using the flow solution and coding
scheme as illustrated in Fig. 5.

VI. LIMITATIONS AND EXTENSIONS

This paper proposes a general modeling and solution frame-
work for the throughput optimization problem for multi-
hop wireless networks. In this section, we point out several
limitations and possible extensions of the current framework.

• Inter-session network coding for multiple data sessions
is not considered in our framework. However, inter-
session coding provides only marginal throughput gains
[1], while it renders the data routing sub-problem NP-
hard. Thus, ignoring such possibilities seems justifiable.

• One of the main physical layer assumptions in this
paper is that each link transmits and receives signals
independently. Possibilities of multi-access, broadcast or
relay communications are not considered. The model
presented in this paper is realistic in an ad-hoc network
where no synchronization between the nodes is possible
and interference is always regarded as noise. However,
when a moderate amount of node cooperation can be
implemented (e.g., as in [17]), the utilization of multiuser
techniques in the physical layer is expected to provide
further gains.

VII. CONCLUSIONS

In this paper, we have proposed a general framework
for both modeling and solving the throughput optimization
problem in multi-hop wireless networks. In our framework,

network coding, data routing, and wireless interference can be
jointly considered to achieve the overall optimal performance.
Our solution framework decomposes the optimization problem
into smaller sub-problems: data routing at the network layer
and power allocation at the physical layer. Modeling and
solution algorithms for each sub-problem can be easily tuned
according to a specific networking technology, as well as
available optimization techniques.
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