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Abstract— This paper presents a structured characterization
of a class of decode-and-forward (DF) strategies for arbitrary
multirelay networks. In contrast to conventional DF strategies in
which each relay transmits the bin index of the source message
only, the proposed generalized DF strategies allow each relay to
decode a selection of messages from other nodes and forward
bin indices for them. A tree structure is utilized to characterize
the dependencies of messages on each other. Based on this
tree structure, closed-form expressions for the achievable rates
of these DF schemes are derived. The proposed DF strategy
improves the previous multirelay DF rates and gives the capacity
of new forms of degraded multirelay networks.

I. INTRODUCTION

Relay networks have attracted extensive attention recently
[1], [2], [3], [4], [5]. In a relay network, a source com-
municates with a destination with the help of one or more
relays. One of the main strategies for the relay network is the
decode-and-forward (DF) strategy, originally introduced in [6,
Theorem 1]. In the DF strategy for the single-relay channel, the
relay decodes the source message and forwards a bin index for
it to the destination. However, in a multirelay network, many
different DF schemes are possible, since each terminal may
decode multiple messages from multiple upstream nodes and
transmit multiple bin indices to multiple downstream nodes in
a network.

This paper presents a structured formulation of a class of
DF strategies for a given arbitrary multirelay network. This
characterization is made possible via the use of a message
tree which captures the dependencies between the messages
of different terminals. Based on this tree structure, closed-
form expressions for the achievable rates of these DF schemes
are formulated. This work is a generalization of [7] where
a parity-forwarding protocol is proposed for two- and three-
relay networks. The main contribution of this paper is a
structured generalization of the parity forwarding protocol for
an arbitrary network.

This work is one step toward a yet elusive theory of net-
work information flow. Following an information theoretical
approach, we formulate an improved set of achievable rates
corresponding to various possible DF strategies for a given
multirelay network. As a byproduct, the capacities of new
forms of degraded multirelay networks are found.

II. FROM SINGLE-RELAY DF TO MULTIRELAY DF

The multirelay DF strategy devised in this paper is a
generalization of the DF scheme of [6]. In the following, we
outline how the single-relay DF scheme can be generalized to
multirelays.

In the single-relay DF protocol, in each block, the source
selects a new message m0 ∈ {1, 2, · · · , 2nR0} of rate R0. The
set {1, 2, · · · , 2nR0} is randomly binned into 2nR1 bins of
equal size. These bins are indexed by m1 ∈ {1, 2, · · · , 2nR1}.
The relay decodes the source message in each block, and
forwards its bin index m1 in the next block. Since m1

is computable from m0, the source can broadcast the two
messages m0 and m1 in each block, and cooperate with the
relay in transmitting m1. To encode the two messages m0 and
m1, the source utilizes the superposition broadcast encoding
scheme of the degraded broadcast channel [6, Chapter 14.6.2].
The source encodes m0 on top of m1 by constructing a
random codebook for every codeword encoding m1. Let
u1(m1) denote the random codeword encoding m1 generated
according to the probability distribution (PDF) p(u1). The
source generates a random codebook of size 2nR0 indexed
by m0 for each sequence u1(m1) according to p(u0|u1), i.e.,
for each u1(m1), 2nR0 codewords u0(m0|m1) are randomly
generated according to Πip(u0i|u1i) where u0i and u1i denote
the ith elements of u0 and u1, respectively.

A generalization of this single-relay scheme to a multirelay
network can be obtained by allowing each relay to decode a
selection of messages of other transmitters in each block, and
to forward their corresponding bin indices in the next block.
In such a scheme, a relay could transmit a bin index for a
relay message, which itself is the bin index of yet another
message. To characterize these message dependencies, a tree
structure can be utilized in which messages are represented by
the nodes and the child of a message represents its bin index.

As in the single-relay case, a broadcast strategy must be
utilized in the multirelay network to encode multiple messages
at the source or at the relays. Since each transmitter may be
capable of determining the messages of subsequent relays, it
can cooperate in transmitting this set of known messages. This
paper considers multirelay DF protocols that utilize superposi-
tion broadcast encoding. Although the superposition broadcast
strategy is restrictive in that the messages have to be ordered
according to the nature of degradedness and parallel relaying
is not considered, it allows for an analytical formulation of a
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Fig. 1. Parity forwarding protocol for a four-relay network. The sets Ak ,
1 ≤ k ≤ 4, indicate the messages of the kth relay. The set Dk , 1 ≤ k ≤ 4,
indicates messages that the kth relay decodes. The message tree describes the
dependencies of messages on each other.

set of achievable rates for an arbitrary network, extending the
previous results on multirelay decode-and-forward.

III. MULTIRELAY PARITY FORWARDING

Consider a multirelay network consisting of a pair of source
and destination and K relay terminals numbered from 1 to
K. Our strategy is to assign one or more messages to each
relay terminal. Each relay message is a bin index (parity) for
a message of another transmitter.

The bin index (parity) of a message is determined via
parity generation function. Let By = {S1,S2, · · · ,S2nRy } be
a uniform random partitioning of {1, 2, · · · , 2nRx} into 2nRy

bins Sk of size 2n(Rx−Ry) indexed by Y = {1, 2, · · · , 2nRy}.
The parity generation function PBy

( · ) returns the bin index
of its argument with respect to By , i.e., v = PBy

(u) if and
only if u ∈ Sv .

Let m0 ∈ {1, 2, . . . , 2nR0} denote the source message of
rate R0. In each block, the first relay decodes the source
message and forwards a set of parity messages A1 =
{m11,m12, . . . ,m1n1} for m0 (in the next block). The second
relay decodes a selection of the source and the first relay
messages, and forwards a set of parity messages A2 =
{m21,m22, . . . ,m2n2} for its decoded set of messages, and
so on for other relay terminals. (See Fig. 1 for an example.)
The tree structure defined in the following characterizes this
procedure.

Definition 1 (Message Tree): For a relay network, a mes-
sage tree is defined by a directed tree τ = (M, E) where
M denotes the set of nodes corresponding to all messages
passed in the network, and E denotes the set of directed
edges. The source message m0 denotes the root node. All
other nodes correspond to parity messages sent by the relay
terminals. The kth relay, 1 ≤ k ≤ K, transmits nk > 0
messages mk1, mk2, . . . , mknk

. The edge connecting mk′l′

to mkl corresponds to the parity generation function PBkl
( · ),

which maps the message mk′l′ ∈ {1, 2, · · · , 2nRk′l′} to its bin
index mkl ∈ {1, 2, · · · , 2nRkl} with respect to Bkl, a random
uniform partitioning of {1, 2, · · · , 2nRk′l′} into 2nRkl bins.
The random partitioning sets Bkl, 1 ≤ k ≤ K, 1 ≤ l ≤ nk are
generated independently.

Notation 1 (→, 9): We use m → m′ to denote that the
message m′ is a descendent of the message m. The message
m′ is a descendent of m if there is a path from the message
m to the message m′ on the message tree, i.e., m′ is a parity
message for m, either directly or via other intermediate parity
messages. A message is considered to be a descendent of itself,
i.e., ∀m ∈ M,m → m. We write m 9 m′ if m → m′ is
not true. We write F → m to denote that the message m is a
descendent of the set F ⊂M. The message m is a descendent
of F if ∃f ∈ F such that f → m. A set of messages G ⊂M
is a descendent of F if F → g,∀g ∈ G, which is denoted by
F → G. The “9” relation for sets of messages denotes the
negation of “→”.

Let Ak ⊂M denote the set of messages for the kth relay.
The collection of Ak’s forms a disjoint partitioning of M.
Since the source transmits m0, we have A0 = {m0}. Note
that a message and its parities cannot be in the same message
set, i.e., ∀m 6= m′ ∈ Ak, m 9 m′. Furthermore, for i < j
there is no message in Ai which is a descendent of Aj . This
property implies that the message of the first relay can only
be a parity of the source message, the second relay’s message
can only be a parity for the first relay or the source message,
the third relay’s message can only be a parity of the source,
the first relay or the second relay’s message, and so on. A
message is said to be of order k if it belongs to Ak. A relay
terminal or a message has a lower order if it is assigned to a
set Ak with a smaller k.

The kth relay encodes {mt
k1,m

t
k2, · · · ,mt

knk
} in block t.

The messages sent in block t are parity functions of the
messages sent in blocks t − k to t − 1. More precisely, if
mki is a direct parity of mlj , then in block t we have:

mt
ki = PBki

(mt−(k−l)
lj ). (1)

The kth relay must decode a set of messages Dk in order
to generate parity messages assigned by Ak. The set Dk in
general can be any set of messages for which Dk → Ak.
Having decoded the messages in Dk, the kth relay knows all
messages that are directly or indirectly parities of messages
in Dk, some of which are assigned to other relay terminals
to be transmitted in subsequent blocks. For optimal encoding,
the kth relay should cooperate with other relay terminals to
transmit messages known to the kth relay.

The Dk sets should have the following properties. First,
the set Ak is generated from Dk, i.e., Dk → Ak while
Dk ∩ Ak = {}. Second, if a message mli is a descendent
of Dk, then ∀i′ ≤ i : Dk → mli′ (note that if mrs ∈ Dk then
Dk → mrs). This property is required, since in superposition
broadcast encoding, messages are superimposed on top of
each other. In particular, the messages are superimposed in the
order of their second subscript; thus, if the kth relay knows
a message mli of the lth relay, then it also knows all other
messages of the lth relay with a second subscript less than
i. Third, a message and its parity cannot be both in Dk, i.e.,
∀m 6= m′ ∈ Dk : m 9 m′. Finally, for the destination, we
have DK+1 = {m0}. Note that a collection of Dk’s always
exists, since Dk = {m0}, 1 ≤ k ≤ K + 1, satisfies the above
properties.
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Fig. 2. Examples of known sets for the four-relay network in Fig. 1.

In summary, a parity forwarding protocol for a network
with K relay terminals is defined by a three tuple (τ,A,D)
consisting of the message tree τ , defining the relation between
messages and parities; the partitioning A, which assigns the
messages to different relay terminals; and the set of decoding
sets D = {D1,D2, . . . ,DK+1}, which determines the set of
messages each relay should decode.

A. Encoding

In the parity forwarding protocol, each relay should transmit
multiple messages using superposition broadcast encoding. For
each message mkl, let us first identify the set of all messages
on top of which mkl should be encoded.

Definition 2 (Known Sets): First, at the kth relay terminal,
the message mki is encoded on top of all messages mkj , j < i.
Furthermore, in each block, the kth relay knows all descendent
messages of Dk transmitted by relay terminals of orders higher
than k, i.e., {mk′i′ ∈ M, k′ > k|Dk → mk′i′}. Hence, a
message mki should be encoded on top of its known set of
messages Cm

ki = {mkj , j < i} ∪ {mk′i′ ∈ M|k′ > k,Dk →
mk′l′}. The known set for the source message consists of all
parity messages of the message tree. Let Cm

ki(t) denote the
instance of Cm

ki messages in the tth block. (See Fig. 2 as an
example.)

The first step in the generation of random codebooks is to
assign a probability distribution and a random variable to each
message on the tree. Let Uki represent the random variable
corresponding to the encoding of mki

1. The set Cu
ki is defined

as the set of random variables corresponding to messages in
Cm

ki , i.e., Cu
ki = {Uki|mki ∈ Cm

ki}. The probability distribution
p(uki|Cu

ki) is associated with Uki. Note that by properties
of the decoding sets,

∏K
k=0

∏nk

i=1 p(uki|Cki) is a valid joint
probability distribution.

To generate random codebooks, we start with messages with
empty known sets associated with unconditional probability
distributions. For every message mki, 1 ≤ k ≤ K, 1 ≤ i ≤
ni with Cm

ki = {}, 2nRki codewords uki(mki) are randomly

1For notational simplicity in referring to the source terminal, let us define
the 00 subscript to be equivalent to 0, e.g., U00 and u00 are equivalent to
U0 and u0, respectively.

generated according to probability distribution p(uki). In the
next step, for every message mk′i′ for which the codewords
for all messages in the corresponding Cm

k′i′ have already been
constructed (in the previous step), 2nRk′i′ random codewords
are generated for every combination of codewords in Cm

k′i′

according to p(uk′i′ |Cu
k′i′) (similar to the code construction

for a degraded broadcast channel in which the source encodes
messages mk′i′ and Cm

k′i′ ). This procedure is repeated until
random codebooks are generated for all messages. In block t,
the kth terminal, 0 ≤ k ≤ K, transmits uknk

(
mt

knk
|Cm

knk
(t)

)
.

B. Decoding

Let Y1, Y2, . . . , YK+1 and yt
1,y

t
2, . . . ,y

t
d denote the random

variables and random sequences representing the channel
outputs and received sequences in block t at the first relay,
the second relay, . . ., up to the destination, respectively.

At the kth relay terminal, the decoding is performed over
a window of successive blocks. Let Aq be the lowest order
message set (smallest q, 0 ≤ q ≤ K,) which has an element
in Dk, i.e., Aq ∩Dk 6= {} and ∀q′ < q,Aq′ ∩Dk = {}. Then,
according to (1), the decoding window for the kth relay in
block t is given by (yt−(k−q)+1

k , . . . ,yt
k).

Let us identify all parity messages for the messages in Dk

available to the kth relay terminal. Any descendent message
of Dk sent in or before block t can be used in block t as a
parity for the messages in Dk. The set of all such messages
is defined by Tk = {mrs ∈ M|Dk → mrs, r < k}. Note that
according to (1), a parity message mrs for Dk with r ≥ k is
available only after block t.

Consequently, the kth terminal, 1 ≤ k ≤ K + 1, should
jointly decode the set of messages Tk in block t. The total
number of all valid combination of candidate codewords
corresponding to messages in Tk is given by

2nRk , 2n(
∑

∀r,s:mrs∈Dk
Rrs)

, (2)

since the messages in Dk uniquely determine the messages in
Tk. (For the destination, TK+1 = M, and the total number of
all possible candidate codewords is given by the source rate
2nR0 .)

To decode the messages in Tk, note that the probabil-
ity that a codeword ulj

(
mlj |Cm

lj (t− (k − l) + 1)
)

, q ≤

l < k, generated according to p
(
ulj |Cu

lj (t− (k − l) + 1)
)

,

is incorrectly declared jointly typical with yt−(k−l)
k , given

Cu
lj (t− (k − l) + 1), is equal to 2−nI(Ulj ;Yk|Cu

lj), where
Cu

lj (t− (k − l) + 1) denotes the set of codewords correspond-
ing to messages in Cm

lj (t− (k − 1) + 1).
The joint decoding of Tk is successful if a corresponding

rate constraint is met for the decoding of all subsets of Tk. Let
I be any subset of Tk and I ′ = {mli ∈ Tk|I 9 mli}. Fixing
the messages in I, the probability of error for decoding I ′ is
given by

|I ′|2−n
∑

∀hj:mhj∈I′
I(Uhj ;Yk|Cu

hj) (3)

where |I ′| denotes the number of all valid combination of
messages in I ′. To compute |I ′| note that |I ′| = |Tk|−|I|. Let
JI be the minimal subset of I which generates I, i.e., ∀F ⊂
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I : JI → F . Since JI generates I, we have |I| = |JI |. Note
that Dk is the minimal generator set for Tk; hence, we have
|Tk| = |Dk|. Consequently, the decoding error probability at
the kth terminal approaches to zero as n goes to infinity if:∑
∀h,i:mhi∈Dk

Rhi︸ ︷︷ ︸
|Tk|

≤
∑

∀hj:mhj∈I′
I(Uhj ;Yk|Cu

hj) +
∑

∀l,j:mlj∈JI

Rlj︸ ︷︷ ︸
|JI |

∀I ⊂ Tk. (4)

Summarizing, the following theorem characterizes the
achievable rate of the parity forwarding protocol defined by
(τ,A,D).

Theorem 1 (Achievable Rate of Parity Forwarding):
Consider a memoryless relay network with K relay terminals
defined by the probability distribution

p(y1, y2, · · · , yK , yK+1|u0, u1n1 , u2n2 , · · · , uKnK
).

For the parity forwarding protocol (τ,A,D), the source data
rate R0 satisfying the following constraints maximized over
the probability distribution

∏
∀l,i:mli∈M p(uli|Cu

li) (along with
a set of positive rates Rhi corresponding to the messages mhi

in decoding sets Dk, 1 ≤ k ≤ K + 1) is achievable:∑
∀h,i:mhi∈Dk

Rhi ≤
∑

∀hj:mhj∈I′
I(Uhj ;Yk|Cu

hj) +
∑

∀l,j:mlj∈JI

Rlj

∀I ⊂ Tk,∀k : 1 ≤ k ≤ K + 1. (5)
It should be noted that some of the inequalities in (5) may

be redundant, allowing for further simplification of (5). In
particular, an inequality in which there exists an Rlj on the
right-hand side that does not appear on the left-hand side
of another inequality may be ignored, since such an Rlj is
unbounded.

In the following section we describe simplified examples of
parity forwarding protocols for chain networks. New forms of
degraded multirelay networks for which parity forwarding is
capacity achieving are also identified.

0 1 K

m0 m1 mK

Fig. 4. Chain message tree.
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Fig. 5. A degraded chain network with additive noises Nk , 1 ≤ k ≤ K.
Each relay can directly communicate only to its successor terminal. The kth
relay decodes the message of relay k − 1 and forwards a parity for it.

IV. EXAMPLES WITH CHAIN MESSAGE TREE

Consider a relay network with K relay terminals ordered
from 1 to K. The message tree shown in Fig. 4 corresponds
to parity forwarding protocols in which the kth relay transmits
a parity message for the message of relay k − 1.

For a given network, various parity forwarding protocols can
be devised corresponding to different message trees and differ-
ent choices of message sets and decoding sets. For example,
for the chain message tree shown in Fig. 4, each relay terminal
may only decode the message of its predecessor. This would
be a good scheme if each relay terminal has a small range and
can only communicate to its successor relay (e.g., the degraded
network shown in Fig. 5). Such a scheme corresponds to
setting Dk = {mk−1}, 1 ≤ k ≤ K, and DK+1 = {m0}.
Consequently, we have Cm

k = {mk+1,mk+2, · · · ,mK}, 0 ≤
k ≤ K, Tk = {mk−1}, 0 < k ≤ K, 1 < k ≤ K, and
TK+1 = {m0,m1, · · · ,mK}.

The achievable rate given by Theorem 1 for this protocol
can be computed as follows. For 1 ≤ k ≤ K, the only subsets
I of Tk = {mk−1} are {} and Tk. Hence, the inequalities
corresponding to k = 1 in (5) are given by

R0 ≤ I(U0;Y1|U1, U2, · · · , UK) : I = {}, I ′ = T1 = {m0}
R0 ≤ R0 : I = {m0}, I ′ = {}

Similarly, for 2 ≤ k ≤ K, (5) requires that

Rk−1 ≤ I(Uk−1;Yk|Uk, · · · , UK) : I = {}, I ′ = {mk−1}
Rk−1 ≤ Rk−1 : I = {mk−1}, I ′ = {}.

Finally, since TK+1 = {m0,m1, · · · ,mK} and DK+1 =
{m0}, (5) gives the following inequalities for k = K + 1:

R0 ≤
l−1∑
i=1

I(Ui;YK+1|Ui+1, · · · , UK+1) + Rl, 2 ≤ l ≤ K

(6)

The above inequalities are derived by setting JI = {ml} and
I ′ = {m0, · · · ,ml−1} for 2 ≤ l ≤ K.

Using the chain rule for the mutual information and substi-
tuting the constraints on Rl for 2 ≤ l ≤ K in (6) results in
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Fig. 7. A degraded chain network with additive noise. For k even, the kth
relays can only communicate to its direct successor. For odd k’s, the kth relay
helps the (k + 1)th relay decode the message of the (k − 1)th relay.

the following achievable rate:

R0 < I(U0; Y1|U1, U2, . . . , UK)

R0 < I(U1; Y2|U2, . . . , UK) + I(U0; YK+1|U1, . . . , UK)+

R0 < I(U2; Y3|U3, . . . , UK) + I(U0, U1; YK+1|U2, . . . , UK)

...
R0 < I(UK−1; YK |UK) + I(U0, . . . , UK−2; YK+1|UK−1, UK)

R0 < I(U0, U1, . . . , UK ; YK+1).

Using the cut-set bound [8, Theorem 14.10.1], it can be
proved that this rate is indeed the capacity for the degraded
network shown in Fig. 5. This is intuitive since, each rate-
constraint in the above achievable rate consists of two compo-
nents: one component represents the transferable information
from a relay terminal to its successor, and the other component
corresponds to the cooperative transferable information from
all lower order relays to the destination. This coincides with
the rate given by the cut-set defined at the kth relay separating
the source and the first k relays from the destination the rest
of the relays.

As another example, consider the protocol described by the
message tree depicted in Fig. 6. In this network, the source and
the first relay cooperate to communicate to the second relay.
The second relay and the third relay cooperate to communicate
to the fourth relay, and so on. Assume that K is odd. The
kth relay decodes the message of relay k − 1 for odd k’s,
and decodes the message of relay k − 2 for even k’s. This
scenario corresponds to setting Dk = {mk−1} for odd k’s,
and Dk = {mk−2} for even k’s. Hence, Tk = {mk−1} for
odd k’s, and Tk = {mk−2,mk−1} for even k’s (Fig. 6). For
the destination, TK+1 = {m0, · · · ,mK}, and DK+1 = {m0}.

Using the same approach as in the previous example, the
following rate is achievable by Theorem 1:

R0 < I(U0; Y1|U1, · · · , UK)

R0 < I(U0, U1; Y2|U2, · · · , UK)

R0 < I(U2; Y3|U3, · · · , UK) + I(U0, U1; YK+1|U2, · · · , UK)

R0 < I(U2, U3; Y4|U4, · · · , UK) + I(U0, U1; YK+1|U2, · · · , UK)

...
R0 < I(UK−2; YK−1|UK−1,UK )+

I(U0, U1, · · · , UK−3; YK+1|UK−2, · · · , UK)

R0 < I(UK−2, UK−1; YK |UK)+

I(U0, U1, · · · , UK−3; YK+1|UK−2, UK−1, UK)

R0 < I(U0, U1, · · · , UK ; YK+1)

The above rate meets the cut-set bound for the degraded
network shown in Fig. 7. This is intuitively justified if we
consider the cut-set defined at the kth relay, separating the
source and the first k relays from the destination and relays
k + 1 up to K. For an odd k, the rate of this cut-set equals
to the cooperative information rate from relays k − 1 and k
to relay k + 1, plus the cooperative rate from the source and
relays 1 up to k− 2 to the destination. For an even k, the rate
of this cut-set is given by the rate at which the kth terminal can
communicate to relay k + 1, plus the rate at which the source
and the first k− 1 relays can communicate to the destination.

Finally, we note that the previous best multihop DF rate
derived in [1] is achieved by setting Dk = {m0}, 1 ≤ k ≤
K + 1. The DF rates proposed in this paper are more general
and they improve that of [1].

V. CONCLUSIONS

This paper formulates a class of DF strategies for an arbi-
trary multirelay network. In this set of strategies, called parity
forwarding, relay nodes forward bin indices for the messages
of other transmitters. The message tree structure is utilized
to characterize the encoding and decoding procedures and the
dependencies between messages and their bin indices. Parity
forwarding improves previous DF strategies because of its
flexibility, and achieves the capacity of new forms of degraded
multirelay networks. To derive closed-form expressions for the
achievable rate, we restricted ourselves to the superposition
encoding strategy of the degraded broadcast channel; further
generalization is viable by using more sophisticated broadcast-
ing schemes.
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