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Abstract—This paper proposes a numerical method for
characterizing the achievable rate region for a Gaussian
multiple access channel with ISI under the frequency divi-
sion multiple access restriction. The frequency spectrum
is divided into discrete frequency bins and the discrete bin
assignment problem is shown to have a convex program-
ming relaxation, making it tractable to numerical algo-
rithms. The run-time complexity may be further reduced
in the two-user case if the two channels are identical, or if
the signal-to-noise ratio is high.

I. Introduction

In a Gaussian multiple access channel, M independent
senders attempt to communicate with a single receiver
in the presence of additive Gaussian noise. The capac-
ity region of the Gaussian multiple access channel is the
set of rates (R1, R2, ..., RM ) at which the receiver may
decode information from each sender without error. In
general, each user has a different channel, and each chan-
nel has intersymbol interference (ISI). The capacity re-
gion for such multiple access channel with ISI was solved
by Cheng and Verdu in [1], where they used a multiuser
waterfilling scheme to allocate each user’s power over fre-
quency. They showed that the optimum multiuser water-
filling spectrum involves superposition in frequency, so
frequency division multiple access (FDMA) alone is not
optimal except in special cases. However, FDMA may be
desirable in practical implementations, especially in or-
thogonal frequency division multiplex (OFDM) systems.
This paper addresses the problem of finding the achiev-
able rate region and finding the optimal frequency parti-
tion for multiple access channels with ISI if the frequency
division multiple access restriction is placed.

The FDMA-capacity problem is motivated by the
search for the optimum frequency duplex scheme for
VDSL (Very-high-speed Digital Subscriber Lines). In
VDSL, frequency division duplex is used to separate up-
stream and downstream transmission. The optimal fre-
quency assignment between upstream and downstream is
an optimal FDMA-capacity problem for a multiple ac-
cess channel with two users. Previously, [2] studied a
similar joint signaling problem in the crosstalk environ-
ment under the assumption that two channels are the
same. In the present optimal frequency duplex problem,
however, upstream and downstream often have different
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noise disturbances, so a multiple access channel model
with a different channel for each user is more appropriate.
The FDMA-capacity problem also appears in the wire-
less OFDM context. For example, [3] studied a power-
minimization problem with rate constraints, which is a
dual of the present capacity problem. Finally, of practi-
cal interests are sub-optimal low complexity algorithms.
In this direction, [4] and [5] showed that in the setting
of providing different quality of service (QoS) for differ-
ent services in a single subscriber line, a simple search
algorithm to find the optimal partition of OFDM tones
is asymptotically optimal. This motivated our search for
low complexity alternatives in the current formulation.
The rest of the paper is organized as follows. In section

II, the FDMA-capacity problem for the multiple access
channel is posed as a convex programming problem. Sec-
tion III shows that under two special cases the optimal
two-user FDMA partition is a two-band partition. Sec-
tion IV describes the VDSL duplex problem as a practical
example. Conclusions are drawn in section V.

II. Optimal Frequency Partition

A Gaussian multiple access channel with M users is
shown in Fig. 1. The goal is to solve for the rate region
achievable with FDMA. The rate region characterizes the
trade-off among data rates for different users. The point
on the boundary of the rate achievable region where the
normal to the tangent hyperplane is in the direction of
the vector (α1, α2, ..., αM ), where αi ≥ 0, can be found by
maximizing

∑M
i=1 αiRi. Maximizing this aggregate data

rate for various αi’s characterizes the entire rate region.
The variables {αi} can also be interpreted as the relative
priorities given to each user.
In the following, we concentrate on the multiple access

channel with two users. To cast the problem of maxi-
mizing the aggregate data rate with FDMA constraint
into a finite dimensional problem, we divide the frequency
spectrum into a large number of rectangular frequency
bins, and assume that the channel response is flat within
each bin. As the number of bins increases to infinity,
the piecewise constant channel model approaches the ac-
tual channel. In this discretized version, each frequency
bin may be assigned to one of the two users, so the opti-
mal frequency division problem becomes a set assignment
problem. However, the set assignment problem is an inte-
ger programming problem, which is computationally dif-
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Fig. 1. A multiple access channel
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Fig. 2. Optimization with frequency division multiple access

ficult. So, instead of restricting the boundaries of fre-
quency partition between the two users to align with the
bin boundaries as the integer programming does, we al-
low the boundary to be anywhere in the bin, hence relax-
ing the integer programming problem into a continuous-
variable optimization problem. In effect, each frequency
bin may be sub-partitioned arbitrarily between the two
users as illustrated in Fig. 2. As the bin width becomes
small, at the optimum, almost every bin except a few will
be exclusively assigned to one user. This is because the
optimal allocation usually involves only a few frequency
bands. When the width of the frequency bin is less than
the width of the narrowest frequency band in the optimal
allocation, frequency bins in the middle of the bands are
fully allocated to one user only, and those on the bound-
ary of the frequency bands are the only ones shared. In
practice where an integer solution is desired, the bound-
ary bins can be assigned to either user arbitrarily. As long
as there are only small number of such shared bins, their
assignment does not affect the total rate appreciably.

The discrete partition of the frequency spectrum into
flat subchannels is similar to the OFDM setting where
an IFFT/FFT pair together with cyclic prefix are used
to perform modulation and de-modulation. Each OFDM

tone corresponds to a frequency bin. However, frequency
partition by FFT results in significant adjacent band en-
ergy, so there is no easy way to divide each tone further
in frequency. Such sub-division is crucial to form a relax-
ation to the original integer programming problem.
Mathematically, the optimization problem can be

posed as follows. Let ωm,n and Pm,n be the amount of
bandwidth and power assigned to user m in the nth fre-
quency bin respectively. The objective is to choose ωm,n
and Pm,n to maximize the aggregate data rate:

max
∑M
m=1 αm ·

∑N
n=1 ωm,n log

(
1 +

Pm,n·H2m,n
ωm,n·Nm,n

)

s.t.
∑M
m=1 ωm,n ≤ ωn, ∀n,∑N
n=1 Pm,n ≤ Pm, ∀m,
Pm,n/ωm,n ≤ Sm,n,

Pm,n ≥ 0,
ωm,n ≥ 0, (1)

where N is the total number of frequency bins, M is the
total number of users, αm are the relative weights given
to each user, Hm,n and Nm,n are the channel response
and noise power spectral density respectively for user m
in frequency bin n, and ωn is the width of the nth fre-
quency bin. A total power constraint Pm (in dBm), and a
power-spectral-density constraint Sm,n (in dBm/Hz) are
imposed on each user. Solving the optimization problem
for various αm’s traces the boundary of the achievable
rate region.
In general, constrained nonlinear optimization prob-

lems are not easy to solve because many local minima
potentially exist. However, in this case, two features
make the problem tractable. First, as a function of
(Pm,n, ωm,n), the objective function is concave. A proof
of this fact is presented in the appendix. Secondly, the
constraints are linear which means the constraint set is
convex. Since the optimization problem has the form of
a concave function constrained to a convex set, it is a
convex programming problem. Thus, a local maximum
is also a global maximum, and numerical convex pro-
gramming algorithms such as the interior-point method
are well-suited to solve this problem efficiently [6]. The
complexity of numerical convex programming methods
increases as a polynomial function of the number of vari-
ables.

III. Low Complexity Solutions

In convex programming, it is usually possible to ex-
plore the specific problem structure to reduce dimension-
ality and run-time complexity. Previously, [4] and [5]
proposed a searching method to solve the optimal allo-
cation problem to guarantee QoS for multiple services in
a single subscriber line. Although the problem setting
in the current case is different, the same search method
applies under two special circumstances.



To gain some intuition, consider a two-user case where
the channel and the power constraints are the same for
the two users. No power-spectral-density limit is imposed
and the objective is to maximize R1+R2. In this special
case, [1] showed that an optimal solution is to waterfill
with combined power, so that the water levels for the two
users are equal. There are many methods to achieve the
maximum rate sum. For example, we can divide every
frequency bin equally into two halves and assign one half
to each user. Or, we can order the sub-channels accord-
ing to channel-gain-to-noise ratio, and divide the sorted
channels into two bands. As long as the frequency band
boundary is chosen so that the two users have the same
water level, maximum combined data rate is achieved, re-
gardless of which user is assigned the better sub-channels.
When the priorities of the two users are different, the

two users no longer have the same water level at the op-
timum. Nevertheless, the two-band partition remains the
optimal one when the two channels are identical.
Theorem 1: Consider a Gaussian multiple access chan-

nel with two users, each with a total power constraint,
but no power-spectral-density constraint. Define the
channel-gain-to-noise ratio as gm,n = H

2
m,n/Nm,n, where

m = 1, 2, and n = 0 · · ·N . Suppose that the channel
and noise characteristics for the two users are identi-
cal, i.e. g1,n = g2,n = gn, ∀n. Suppose further that
gn is monotonically decreasing in n, i.e., gi ≥ gj for
i < j. Then, the optimal frequency partition maximizing
R1 + αR2, where α > 1, consists of two frequency bands
only. More precisely, at the optimum, there exist L1 and
L2, 1 ≤ L1 ≤ L2 ≤ N , such that ω1,l = 0 and ω2,l = 1 for
all l < L1, and ω1,l = 1 and ω2,l = 0 for all L1 < l < L2.
Frequency bins beyond L2 are not used by either user.
Only the variables ω1,L1, ω2,L1 and ω1,L2, ω2,L2 may take
fractional values between 0 and 1.
The proof is presented in the appendix. The proof de-

pends on the Karush-Kuhn-Tucker (KKT) condition for
the optimization problem (1). In (1), there is a potential
singularity when ωn,m = 0, so instead of using the con-
straint ωn,m ≥ 0, we use the constraint ωn,m ≥ ε, where ε
is positive but much less than ωn. Then, the KKT condi-
tion asserts the following. There exist positive constants
Km, such that ∀n = 1 · · ·N, ∀m = 1, 2,

Pm,n

ωm,n
+
1

gm,n
= Km, when Pm,n > 0, (2)

and, 1/gm,n ≥ Km, when Pm,n = 0. Also, ∀n,

log

(
1 +
P1,n · g1,n
ω1,n

)
− P1,n · g1,n/ω1,n
1 + P1,n · g1,n/ω1,n =

α log

(
1 +
P2,n · g2,n
ω2,n

)
− α P2,n · g2,n/ω2,n
1 + P2,n · g2,n/ω2,n , (3)

when ω1,n > ε and ω2,n > ε. When ω1,n = ε, the left-
hand side is strictly less than the right-hand side. When

ω2,n = ε, the inequality is reversed. Because the problem
is concave, (2) and (3), together with the total power con-

straints
∑N
n=1 Pm,n ≤ Pm, total bandwidth constraints∑M

m=1 ωm,n ≤ ωn, and the positivity constraints on Pm,n
and ωn,m are the necessary and sufficient optimality con-
ditions.

Equation (2) is the classical waterfilling equation.
Within each user, power is distributed according to
the waterfilling algorithm among the used sub-channels.
Equation (3) decides how much bandwidth is given to
each user. (2) and (3) are nonlinear, and there is no an-
alytic solution in general. However, when the conditions
of Theorem 1 are satisfied, all frequency bins except one
are assigned completely to either user 1 or user 2 as two
bands. Only the single boundary bin is shared. When
the number of frequency bins is large, the data rate con-
tributed by one frequency bin is small. The boundary
bin may be arbitrarily assigned to user 1 or user 2, and
the discrete assignment is very close to the true opti-
mum. This suggests the following algorithm to find a
near-optimal discrete partition.

Sort all the gn’s from the largest to smallest. For each
n = 0 · · ·N , waterfill for user 2 using frequency bins 1 to
n, waterfill for user 1 using frequency bins n + 1 to N .
Compute the aggregate data rate. The optimal partition
boundary is the n which gives the maximum aggregate
data rate. Frequency bins from 1 to n are exclusively
used by user 2, and frequency bins from n + 1 to N
are exclusively used to user 1. The run-time complex-
ity of the algorithm is O(N logN), because sorting takes
O(N logN) operations, each waterfill takes O(N) opera-
tions on sorted channels, and there are at most O(logN)
waterfilling to do with a binary search on the boundary
bin. Binary search is feasible because for each bin n,
equation (3) can be used to decide whether the optimal
boundary is higher or lower than n.

There is another special case where a two-band parti-
tion is optimal. This happens when the signal-to-noise
ratio is high.

Theorem 2: Consider a Gaussian multiple access chan-
nel with two users, each with a total power constraint, but
no power-spectral-density constraint. Define the signal-
to-noise ratio, SNRm,n = Pm,ngm,n/ωm,n. Assume that
at the optimum, SNR is much larger than 1 (0dB) in
all frequency bins. Further assume that the normalized
difference of the two users’ channel-gain-to-noise ratios
(in dB) is a monotonic function of the frequency. More
precisely, assume g1,n/g

α
2,n is monotonic in n. Then, the

optimal frequency partition maximizing R1 + αR2 con-
sists of two frequency bands only.

The proof of Theorem 2 is also presented in the appendix.
Since the solution is two-band, the previous low complex-
ity algorithm applies with only a slight modification. The
complexity is also O(N logN). The same algorithm was
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noted in [7] for the special case where α = 1.

IV. Numerical Example

The optimal duplex problem in VDSL is used as a nu-
merical example. In a frequency division duplex sys-
tem, upstream and downstream do not interfere into
each other, so the optimal duplex problem is the FDMA-
capacity problem for a multiple access channel with two
users. Arbitrary frequency division of upstream and
downstream can be implemented in practice with Dis-
crete Multitone (DMT) modulation when cyclic suffix and
cyclic prefix are added [8].
Simulation is performed on a 26-gauge 500m cable

with standard NEXT and FEXT noise models. The
total power and power-spectral-density constraints are
as defined in [9]. 6dB margin and 3.8dB coding gain
are assumed. The target probability of error is 10−7.
Fig. 3 shows the achievable upstream and downstream
data rates. The rate region is obtained by maximizing
Rup + αRdown for various values of α using the nonlin-
ear programming package MINOS [10]. The trade-off be-
tween upstream and downstream data rates is clearly il-
lustrated.

V. Conclusion

We numerically solved for the FDMA capacity region
for a Gaussian multiple access channel with ISI. The
discrete frequency-bin allocation problem was shown to
have a convex programming relaxation, allowing optimal
frequency partition to be found with efficient numerical
methods. The run-time complexity may be further re-
duced to O(N logN) in the two-user case when the two
channels are identical, or when the signal-to-noise ratio
is high. Numerical examples are given for the optimal
frequency division duplex problem in VDSL.
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Appendix

Proof that (1) is concave: To see that the objective
function (1) is concave, observe that the objective is
a positive linear combination of functions of the type
f(x, y) = x log(1 + y/x), where x ≥ 0 and y ≥ 0. Since
positive linear combination of concave functions is con-
cave, to prove the concavity of the objective, we only
need to show that f(x, y) is concave in (x, y) in the first
quadrant.
A two-dimensional function is concave if and only if its

restriction to a line is concave [6]. Let y = ax+ b, then

f(x, y) = x log
(
1 +
y

x

)
= x log

(
1 + a+

b

x

)
.

Call the above function g(x). The concavity of g(x) is
verified by taking its second derivative:

g′′(x) =
b/(1 + a)

x+ b/(1 + a)

(
1

x+ b/(1 + a)
− 1
x

)
.

Consider three cases:
• b/(1+ a) ≥ 0: Since x is non-negative, the first term in
g′′(x) is non-negative. The second term is negative. So,
the product is negative.
• −x < b/(1 + a) < 0: The numerator of the first term
is negative, but the denominator is positive, so the first
term in g′′(x) is negative. The second term is positive
because x is positive, and b/(1 + a) is negative. So, the
product is negative.
• b/(1 + a) ≤ −x: In this case, both the numerator and
the denominator of the first term is negative, so the first
term is positive. The second term is negative since both
fractions are negative. Again, the product is negative.
The second derivative is always negative. So, g(x) is con-
cave when x ≥ 0, and f(x, y) is concave in the first quad-
rant, and (1) is concave in (Pm,n, ωm,n). 2
Proof of Theorem 1: We start with the KKT condi-

tion, which is necessary and sufficient for optimality. To
avoid singularity at zero, we constrain ωm,n ≥ ε. We
need to prove that at the optimal power and bandwidth
allocation, with K1, K2 as each user’s respective opti-
mal water levels, there exist L1, L2, such that the left-
hand side of (3) is strictly less than the right-hand side
for 1 ≤ n < L1, and the left-hand side of (3) is strictly
greater than the right-hand side for L1 < n < L2, and
beyond L2, 1/gn ≥ K1 and 1/gn ≥ K2.
If a frequency bin is shared between the two users, (2)

and (3) need to be satisfied with equality. Substitute (2)
into (3), we have:

log(K1 · gn) + 1

K1 · gn − 1 =

α log(K2 · gn) + α 1

K2 · gn − α. (4)



This equality is satisfied in each shared bin. If a bin
is to be assigned to user 2, the left-hand side of (4) is
strictly less than the right-hand side. If a bin is to be
assigned to user 1, the left-hand side of (4) is strictly
greater. Consider the difference between the left-hand
side and right-hand side as a function of 1/gn, call it
f(·),

f(1/gn) = (α− 1) log(1/gn) +
(
1

K1
− α
K2

)
(1/gn)

+ logK1 − α logK2 − 1 + α. (5)

When f(1/gn) < 0, the nth frequency bin is assigned
to user 2. When f(1/gn) > 0, the nth frequency bin is
assigned to user 1. Therefore, when gn’s are sorted, ev-
ery time f(x) crosses zero, the frequency bin assignment
switches from one user to the other.
Consider user 2 first. We will show that the frequency

assignment for user 2 is a single band. To prove this,
we only need to show that f(x) has at most one root in
the range 0 < x < K2. This is because user 2 only uses
frequency bins where 1/gn is less than its waterfill level
K2.
Without loss of generality, assume α > 1. Consider
three separate cases:
• K2/K1 ≥ α. In this case, 1/K1 − α/K2 ≥ 0, and
α−1 > 0 by assumption. Both log(x) and x are increasing
function of x, hence f(x) can only have one root.
• 1 < K2/K1 < α. In this case, 1/K1 − α/K2 ≤ 0,
By taking derivative of f(x), it is easy to see that f(x)
is increasing until it reaches a maximum at xmax = K2 ·
K1(α−1)/(αK1−K2), after which point, it is decreasing.
But, xmax = K2

α−1
α−K2/K1 ≥ K2 ≥ K1. So, in the range

where x < K2, f(x) is increasing, hence it can only have
one root.
• K2/K1 ≤ 1. Again, 1/K1 − α/K2 ≤ 0, so f(x) is
increasing until xmax, then decreasing. In this case,
xmax < K2, so f(x) can potentially decrease to zero after
it reaches the maximum. But, the range of our inter-
est is x < K2, and it is easy to check that f(K2) =
K2/K1 − log(K2/K1) − 1 ≥ 0. So f(x) can cross zero
only once in the range x < K2.
In all cases, f(x) crosses zero-axis only once. Since gn
is sorted from the largest to the smallest, we can find L1
such that f(1/gn) < 0 for n < L1, and f(1/gn) > 0 for
n > L1. (If f(1/g0) > 0, set L1 = 1; if f(1/gN) < 0,
set L1 = N .) So, frequency bins 1 ≤ n < L1 are used
exclusively by user 2. We can perform waterfilling on
the rest of the frequency bins to determine the set of
frequency bins to be used by user 1. Since only frequency
bins beyond L1 are available, and since gn are sorted, user
1 will use bins from L1 to some L2 ≤ N . Bins beyond L2
are used by neither user. 2
Proof of Theorem 2: Again, for the nth frequency bin

be shared between the two users, (3) needs to be satisfied

with equality, i.e.,

log(1 + SNR1,n)− SNR1,n
1 + SNR1,n

=

α log(1 + SNR2,n)− α SNR2,n
1 + SNR2,n

, (6)

where the signal-to-noise ratio SNRm,n is defined to be
Pm,nH

2
m,n/ωm,nNm,n. The direction of the inequality de-

termines whether the frequency bin is exclusively used by
user 1 or user 2. Since SNR is assumed to be high, the
second term on both sides of (6) can be approximated by
1. Let K1 and K2 be fixed to their respective values at
the optimum. Substitute (2) into (6), take the difference
between the left-hand side and the right-hand side of (6),
call the function f(), as a function of g1,n and g2,n,

f(g1,n, g2,n) ≈ log(K1 · g1,n)− α log(K2 · g2,n) + α− 1.
(7)

We need to decide whether the above is greater than zero
or less than zero for each n. This function can be rewrit-
ten as f(g1,n, g2,n) = log(g1,n/g

α
2,n)− log(Kα2 /K1)+α−1.

Since log() is a monotonic function, and since g1,n/g
α
2,n is

sorted, f(g1,n, g2,n) is a monotonic function of n. There-
fore, for some L1, f(·) is less than zero for n < L1, greater
than zero for n > L1, implying that the optimum parti-
tion is a two-band solution following the same argument
as in the proof of Theorem 1. 2
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