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Joint Source Coding, Routing and Power Allocation
in Wireless Sensor Networks
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Abstract—This paper proposes a cross-layer optimization
framework for the wireless sensor networks. In a wireless
sensor network, each sensor makes a local observation of the
underlying physical phenomenon and sends a quantized version
of the observation to a central location via wireless links. As
the sensor observations are often partial and correlated, the
network performance is a complicated and nonseparable function
of individual data rates at each sensor. In addition, due to the
shared nature of wireless medium, nearby transmissions often
interfere with each other. Thus, the traditional “bit-pipe” model
for network link capacity no longer holds. This paper deals
with the joint optimization of source quantization, routing, and
power control in a wireless sensor network. We follow a separate
source and channel coding approach and show that the overall
network optimization problem can be naturally decomposed into
a source coding subproblem at the application layer and a
wireless power control subproblem at the physical layer. The
interfaces between the layers are precisely the dual optimization
variables. In addition, we introduce a novel source coding model
at the application layer, which allows the efficient design of
practical source quantization schemes at each sensor. Finally, we
propose a dual algorithm for the overall network optimization
problem. The dual algorithm, when combined with a column-
generation method, allows an efficient solution for the overall
network optimization problem.

Index Terms—Channel capacity region, convex optimization,
dual decomposition, power control, rate-distortion region, rout-
ing, sensor networks, source coding.

I. INTRODUCTION

SENSOR networks have emerged as a promising applica-
tion for future wireless networks. Wireless sensor net-

works are envisioned to consist of a large number of low-
cost low-power sensors deployed over a large area. Each
sensor is capable of not only making local observations of
the underlying physical phenomenon, but also transmitting
the observed information to and relaying the information for
its neighbors using wireless links. Information from all the
sensors is eventually collected at a central processing unit
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(sometime called a central estimation officer, or a CEO),
which produces a global picture of the physical phenomenon.
Potential applications for sensor networks include military
sensing, security monitoring, traffic control and environment
monitoring.

The design objective of the sensor network is to reconstruct
the underlying physical phenomenon as accurately as possible
at the central processing unit. Thus, it is natural to define the
network utility optimization problem for the sensor network as
that of minimizing the overall estimation distortion. However,
because each sensor makes only a partial observation of the
underlying physical phenomenon, the overall estimation at the
CEO depends on the individual data rates from all sensors in
a complicated fashion. In particular, using distributed source
coding techniques, it is possible to tradeoff transmission rate
in one sensor with transmission rate in another sensor by rate
adaptation. In this case, the network utility function is coupled
across all individual rates and is therefore nonseparable.

Further, due to the shared nature of wireless medium,
geographically close transmissions often interfere with each
other. Because of the interference, the traditional ‘bit-pipe’
assumption for link capacity no longer holds. Instead, it is
possible to tradeoff the capacity of one link with the capacity
of another by adaptive power control.

Finally, as a large number of sensors are deployed in a field,
they form an ad-hoc network. The routing problem in a sensor
network becomes that of selecting the best multihop paths to
the CEO. This routing problem is coupled with the source
coding and link capacity problems, further complicating the
overall network design.

In this paper, we address the overall joint source cod-
ing, routing and power allocation problem for the sensor
network. We focus on a complete digital approach, where
each sensor compresses its local observation into bits and
transmits/relays the data digitally. Such a design choice fol-
lows a source-channel separation approach. Although source-
channel separation may not necessarily lead to an information
theoretical optimal design, there are clear practical benefits
for separation. As the main result of this paper shows, the
separation assumption naturally leads to a layered structure in
network optimization, which makes the overall problem more
amendable to analysis and algorithmic solutions.

The highlights of this paper are as follows:

• Framework: We provide an optimization framework that
incorporates design requirements for different layers in a
sensor network. We use a dual decomposition approach to
decompose the overall network optimization problem into
two disjoint subproblems: a source coding subproblem at
the application layer and a power control subproblem at
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the physical layer. A set of Lagrangian dual variables
play the role of coordinating the cross-layer interface.

• Model: We define a novel utility function for the sensor
network that characterizes the tradeoff between estima-
tion accuracy and power consumption in a sensor network
application. In addition, we present a novel simplified
source coding model at the application layer to capture
the rate-distortion optimization in the source coding
subproblem. Similarly, we address the power control and
interference management problem by setting up a coupled
link capacity model at the physical layer.

• Algorithm: We present a dual algorithm to solve the joint
optimization problem at the system level. The algorithm
consists of a subgradient update of the Lagrangian dual
variables that coordinate the application layer and the
physical layer interface, an efficient and iterative solution
of the two subproblems in the two layers, and a column-
generation method that ensures convexity and conver-
gence.

The general framework proposed in this paper represents
a cross-layer optimization strategy. It balances the bit-rate
demand by the source coding module at the application layer
and the bit-rate supply by routing and channel coding modules
at the network and physical layers. Modeling and solution
algorithms for each subproblem can be easily tuned when
new networking techniques or new optimization tools become
available.

This paper focuses on sensor networks or ad-hoc networks
for environment monitoring or video surveillance applications
in which continuous data streams are generated at each sen-
sor. The models considered in this paper are distinct from
detection-based sensor networks in which sensors are put into
a sleep mode most of the time and wake up only upon intrusion
detection. Further, this paper considers a static network in
which sensor locations are fixed once deployed, and where
centralized network optimization is feasible.

A. Related Work

The cross-layer optimization of networks using dual decom-
position has been studied by many authors in recent literature.
In their seminal paper, Kelly, Maulloo, and Tan [1] showed that
the network optimization problem may be cast in a primal or
a dual form. The authors further used the dual decomposition
approach to decompose the utility maximization problem into
a user subproblem and a network subproblem. In a related
work, Low and Lapsley [2] investigated the flow control prob-
lem by solving its dual using a gradient projection approach.
More recently, Xiao, Johansson and Boyd [3] used the dual
decomposition approach to perform a joint optimization of
routing and physical-layer resource allocation in a wireless
network. Dual decomposition is also used by Chiang [4]
in a joint optimization of the Internet Transmission Control
Protocol (TCP) window size and power levels for wireless
networks, where a set of dual variables are used as a means
of cross-layer optimization. Further, Wang, Li, Low and Doyle
[5] investigated a joint TCP and Internet Protocol (IP) routing
problem, where congestion parameters are interpreted as pri-
mal and dual optimization variables. Recently, Lin and Shroff

[6] employed a dual decomposition technique to study the
impact of imperfect scheduling on cross-layer rate control. The
present paper is inspired by these work in the literature. Our
main contribution is to illustrate that the dual decomposition
approach is applicable not only to the joint optimization of
the physical layer and the network layer, but also to the joint
optimization of the application layer. We choose the sensor
network as a natural application as the network utility function
of a sensor network typically depends on the application-layer
data rates in a tightly coupled manner.

A key requirement for the use of the dual decomposition
approach is the underlying convexity structure of the overall
optimization problem. Convexity does not necessarily hold in
wireless networks where nodes interfere with each other. In
this paper, we show that while convexity is indeed crucial,
convexity can always be assured if time-sharing is allowed. We
use a technique called the column-generation method to ensure
convexity. Column generation was first used for the channel
capacity problem by Johansson and Xiao [7]. In this paper,
we show that the column-generation method is applicable to
both rate-distortion and channel capacity problems.

Our work is related to the work of Kim, Rajeswaran and
Negi [8], where the joint power adaptation, scheduling and
routing problem for wireless ad hoc networks in a ultra-
wideband (UWB) context is investigated. This paper is also
related to the work of Xiao, Cui, Luo, and Goldsmith [9],
which studied an optimal power scheduling of decentralized
estimation in a sensor network with energy constraints, and
the work of Xiao and Luo [10], which addressed a multitermi-
nal source-channel communication problem under orthogonal
multiple access. The architectural issue and cross-layer design
for wireless sensor networks were also explored in the work
of Scaglione and Servetto [11], where the interaction of
distributed source coding problem and routing was considered.
The network optimization problem treated in this paper can be
considered as an extension or generalization of the above work
in the sense that source coding, routing and power control are
jointly taken into account in an overall design of a sensor
network.

B. Organization

The remainder of this paper is organized as follows. In
Section II, we provide a joint optimization framework and
propose a dual algorithm for the sensor network. In Section
III, we treat the source coding subproblem and the power
control subproblem in detail. The modeling aspect and the
structure of the subproblems are discussed. In Section IV,
we present an iterative column-generation-based approach to
efficiently solve the two subproblems in each layer and show
how the solutions may be incorporated in the overall dual
algorithm. The interaction between the two subproblems and
the convergence property of the dual algorithm are illustrated
by simulation examples in Section V. Finally, we conclude
the paper in Section VI.

II. JOINT OPTIMIZATION FRAMEWORK

Consider a wireless sensor network with many sensors
deployed over a field. Each sensor makes a local obser-
vation of some underlying physical phenomenon, quantizes
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CEOSource

Fig. 1. Sensor network.

its observation, and transfers the quantized data to a CEO
through a wireless network. The wireless network is typically
infrastructureless, thus each sensor may also act as a relay for
its neighbors. Fig. 1 illustrates a typical sensor network.

For convenience and without loss of generality, this paper
considers a discrete-time model, in which the physical phe-
nomenon is modeled as an i.i.d. discrete-time random vector
(with spatial correlation.)

This paper considers a separate source and channel coding
approach in which the distributed source coding and the infor-
mation transmission problems are considered in two different
layers. Such a separation approach, although not necessarily
optimal, is however architecturally appealing. Recent work
such as [12] considered uncoded transmission with joint
source and channel coding strategies. Although joint source
and channel coding may lead to a better overall performance
in an information theoretical sense, the layered approach
advocated in this paper is much easier to design in practice. As
an alternative to the sensing-and-routing approach considered
in this paper, a tree-based architecture [13], where each sensor
may combine local observation with quantized observation
from neighboring sensors, is also possible. Such a tree-based
architecture is not considered in the present framework.

A. General Framework

The design objective of a sensor network is to reconstruct
the underlying physical phenomenon as accurately as possible,
while making the most efficient use of network resources.
In this section, we propose an optimization framework to
achieve this objective. The formulation of the joint source
coding, routing and power control problem is based on the
following assumptions. First, the overall estimation distortion
is determined by the source coding rates of all sensors. Second,
the source coding rate in each sensor is supported by the
network via different routes from the sensors to the CEO.
Third, at each transmission link, the aggregated flow rate
cannot exceed the link capacity. Fourth, the achievable link
capacity is determined by the signal-to-interference-and-noise
ratio (SINR) of the link, which in turn is determined by the
power levels at all link transmitters.

Let G = (V, E) be the network topology, where V and E
are the sets of vertices and edges respectively. Let d be the
distortion vector and p = [p1, ..., pL]T be the link transmit
power vector, where L is the number of total links. Let s =
[s1, ..., sN ]T be a vector of source coding rates, where N is
the number of total nodes. Let c = [c1, ..., cL]T be a vector
of link capacities.

In this paper, source rates are expressed in bits per source
sample. Link capacities are expressed in bits per channel

sample. Let Ts be the source sampling period, Tc be the
channel sampling period. The source rates and link capacities
in bits per second are then s/Ts and c/Tc, respectively.
For convenience and without loss of generality, we assume
Ts = Tc = 1 in the rest of the paper.

The fundamental concept in source coding is the rate-
distortion region R, which is the closure of the set of achiev-
able rate distortion pairs (s,d) such that source rates s are suf-
ficient to allow reconstruction of the underlying phenomenon
with distortion d. Rate-distortion region R characterizes the
tradeoff between source rates and distortion.

The fundamental concept in channel coding is the power-
capacity region C. Power-capacity region C characterizes the
tradeoff between different link capacities and power con-
straints such that power p is sufficient to support link capaci-
ties c. Such a tradeoff exists because links mutually interfere
with each other.

Source rate is a node-based concept. Link capacity is a
link-based concept. The network routing problem is that of
supporting the distortion-achievable rate by link capacity. This
problem can be formulated using a multicommodity flow
model [14] [3], where quantized observations at different
sensors are represented by different commodity types. The
multicommodity flow model ensures that flow conservation
is obeyed in each node in the network. Mathematically, the
flow conservation constraint can be represented by a so-called
node-link incidence matrix. Let A be an N × L matrix in a
network with N nodes and L links. Define1

ail =

⎧⎨
⎩

1 if i is the start node for link l
−1 if i is the end node for link l
0 else

Then, the condition Ac ≥ s ensures that the source rates can
be supported by link capacities via a suitable routing scheme.
Note that the source data may be routed to the CEO through
multiple paths.

The fundamental objective in a sensor network is to mini-
mize the distortion d incurred in the estimation process. The
fundamental resource constraint in the network is the transmit
power p. The goal of the network optimization problem is to
characterize a tradeoff between the two. Such a trade-off can
be parameterized by weighting vectors α and β in an overall
network optimization problem as follows:

minimize αT d + βT p (1)

subject to
(

s
d

)
∈ R(

c
p

)
∈ C

Ac ≥ s

where α and β represent the relative emphasis on the distortion

d and power consumption p. The constraint

(
s
d

)
∈ R

models interdependence of the distortion d on source coding

1For simplicity, we consider a network with only one CEO and set its
corresponding node-link row as the last row in A. In the formulation of the
optimization problem, this last row may be deleted without loss of generality
because it is linearly dependent of previous rows.
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Application Layer: Source Coding Subproblem
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Source

Fig. 2. Layering in sensor networks.

rates s. The constraint

(
c
p

)
∈ C models the interdepen-

dence of link capacity vector on the power constraint. The last
inequality Ac ≥ s reflects the fact that the source rate at each
node is upper bounded by the link capacity. In the remaining
of this section, we focus on an optimization framework for
solving (1), while assuming for now that the rate-distortion
and power-capacity regions are given. Detailed discussions on
the structures of these regions are deferred to Section III.

B. Dual Decomposing

The solution to the joint optimization problem (1) can
be greatly simplified using a dual decomposition technique.
The idea is to decompose the original problem into two
subproblems by relaxing the inequality constraint Ac ≥ s
using a set of dual variables (or Lagrange multipliers). Such
a decomposition makes efficient and distributed algorithm
design possible. We start by writing down the Lagrangian:

L(λ, s,d, c,p) = αT d + βTp + λT (s− Ac), (2)

where λ = [λ1, . . . , λN ]T is the Lagrange multiplier. The
minimization of the Lagrangian (2) consists of two sets
of variables: (s,d) and (c,p). In this paper, the rate and
distortion variables (s,d) are referred to as application-layer
variables; the capacity and power variables (c,p) are referred
to as physical-layer variables. Moreover, the Lagrangian op-
timization problem is now decoupled into two disjoint parts.
The application-layer part is a pure source coding subproblem

minimize αTd + λT s (3)

subject to
(

s
d

)
∈ R

and the physical-layer part is a pure power control subproblem

maximize μT c − βT p (4)

subject to
(

c
p

)
∈ C

where μ = [μ1, . . . , μL]T is related to the dual variable λ by
the link price consistency equation

μT = λT A. (5)

Thus, the optimization framework naturally provides a layered
structure to the joint source coding, routing, and power control
problem as shown in Fig. 2. The solution to the overall
optimization problem (1) may be obtained by solving the two
subproblems individually and by suitably updating the dual
variables.

The Lagrange multipliers λ and μ have the interpretation
of being the shadow prices coordinating the application-layer
demand and physical-layer supply. A larger value of λi for
node i signals to the application layer that transporting data for
that node is costly. This has the effect of decreasing the source
rate at that node. A larger value of μl for link l signals to the
physical layer to give that particular link a higher priority.
This has the effect of increasing the transport capacity on that
link. The optimization process can be thought of as a process
of matching the supply and demand by iteratively finding an
intersection of the distortion-rate and power-capacity regions.
Note that routing is implicitly taken into account in the
multicommodity flow model. The Lagrangian dual variables
λ and μ are related via the node-link incidence matrix A.

C. Dual Algorithm

The key requirement that allows the efficient and optimal
solution of the joint optimization problem is the convexity
of rate-distortion region and power-capacity region. Assuming
the strict convexity of the regions, we propose the following
algorithm that solves the entire network optimization problem
(1).

Algorithm 1: Basic Algorithm

1) Set t = 0. Initialize λ(0) and set μ(0) = AT λ(0).
2) In the primal domain, solve the following subproblems:{

min
s,d

αT d + (λ(t))T s
∣∣∣ (

s
d

)
∈ R

}
(6)

{
max
c,p

(μ(t))T c − βTp
∣∣∣ (

c
p

)
∈ C

}
(7)

3) In the dual domain, update dual variables as follows:

λ(t+1) =
[
λ(t) + ε(t) (s− Ac)

]+

(8)

μ(t+1) = AT λ(t+1) (9)

where [·]+ denotes max(0, ·).
4) Set t = t + 1. Goto Step 2 until convergence.

Theorem 1: Algorithm 1 always converges to the global
optimum of the overall network optimization problem (1),
provided that the rate-distortion region and power-capacity
region are strictly convex and that the step sizes ε(t) is
appropriately chosen.

Proof: The crucial ingredient that makes the algorithm
work is convexity. Given the convexity of R and C, the
network optimization problem (1) is convex. Define the dual
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objective function

g(λ) = min
s,d,c,p

L(s,d, c,p, λ). (10)

As mentioned earlier, the above minimization decomposes
into two subproblems: (6) and (7). The solutions of the two
subproblems allow g(λ) to be evaluated.

By strong duality [15], the overall network optimization
problem (1) is solved by the following dual maximization
problem:

max
λ

g(λ) (11)

It remains to show that the update step (8) solves the dual
maximization problem. This is due to the fact that the update
step is a subgradient update for λ. Let (s∗,d∗) and (c∗,p∗)
be the optimal solutions of (6) and (7) given λ. Then,

g(λ) = αT d∗ + βTp∗ + λT s∗ − λT Ac∗,

and ∀λ′

g(λ′) ≤ αTd∗ + βT p∗ + λ′T s∗ − λ′T Ac∗.

Thus,

g(λ) − g(λ′) ≥ (s∗ − Ac∗)T (λ − λ′), ∀λ′.

By the definition of subgradient [16] [17], (s∗ − Ac∗) is a
subgradient of g(λ). Thus, as long as step sizes ε(t) are chosen
appropriately, the subgradient update eventually converges to
the optimal dual variable. For example, one appropriate choice
for the step sizes is a square summable but not absolutely
summable sequence [16] [17], such as

ε(t) =
a

b + t
, a > 0, b ≥ 0.

Once the optimal dual variables are found, the corresponding
primal variables can be recovered by explicitly solving (6)
and (7) given the optimal λ and μ. Since the regions are
strictly convex, the recovered primal variables are unique.
Further, they are primal feasible because the original problem
(1) always has a feasible solution2. Due to strong duality, the
primal variables must be global optimum.

To summarize, this section provides a general optimization
framework for modeling and solving the joint source coding,
routing and power allocation problem in wireless sensor
networks. In this framework, the joint optimization problem
is decomposed into the application-layer and the physical-
layer subproblems. As mentioned earlier, the key attribute
that is needed for this dual decomposition approach is the
convexity of rate-distortion and power-capacity regions. In the
following, we first provide concrete examples of rate-distortion
and power-capacity regions, then illustrate a method to ensure
convexity.

III. SOURCE CODING AND POWER CONTROL

SUBPROBLEMS

To make the optimization framework concrete, this section
presents examples of specific models for each of the subprob-

2For example, an obvious feasible solution is the vector of zero source
rates, zero link capacities and zero power consumption with the distortion
being the variance of the underlying source itself.
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Fig. 3. Source coding.

lems. We choose an information-theoretical characterization
of the rate-distortion region and power-capacity region, which
allows us to gain insights into the fundamental tradeoffs be-
tween performance (e.g., distortion) and resource (e.g., power)
in a sensor network. The information-theoretical models also
provide useful bounds for practical system design.

A. Application Layer: Source Coding Subproblem

Consider an environment sensing application depicted in
Fig. 3. The underlying physical phenomenon is modeled by a
vector random variable θ = (θ1, · · · , θM )T , where M is the
vector size. A total number of N sensors are deployed in the
field, each making a local (and possibly partial) observation of
θ, while being corrupted by sensor noise n. The observation
channel from the physical phenomenon to the sensors is
characterized by a matrix H , which depends on the geographic
deployment of sensors. Since sensors are static once deployed,
it is reasonable to assume that H does not change over time.

From a rate-distortion theory point of view, a generic
quantization scheme can be described as follows. At each
sensor i = 1 · · ·N , the noisy observation yi is quantized into
a codeword ui (possibly using a vector quantizer.) The effect
of quantization process at each sensor can be modeled by a
quantization noise random variable qi [18][19]:

u = y + q = Hθ + n + q (12)

The quantized information from all sensors is transmitted back
through the network to the CEO at source rates (s1, ..., sN ).
At the CEO, the decoder first jointly decodes the codewords
u = [u1, ..., uN ]T , then estimates the source. The source
estimation is denoted as θ̂. The distortion criterion is denoted
as d(θ̂, θ). The task of source coding optimization subproblem
is to design good joint quantizers (q1, · · · , qN) to minimize
some weighted objective function αT d + λT s.

From the information-theory literature, the largest achiev-
able rate region subject to a distortion constraint is known
as the Berger-Tung region [20], which can be summarized as
follows∑

i∈φ

si ≥ I(yφ;uφ|uφc), ∀ φ ⊆ P({1, 2, ...N}) (13)

where I(·; ·) denotes mutual information, P(S) is used to
denote the power set of S, u is an auxiliary random vector
with a distribution ΠN

i=1p(ui|yi), and uφ = {ui|i ∈ φ}.
The joint distribution of u is such that the best estimate of
θ given u satisfies the given distortion constraint. The idea
behind the Berger-Tung region can be understood in terms
of the quantization process as follows. The observation yi at

Authorized licensed use limited to: The University of Toronto. Downloaded on February 23, 2009 at 12:47 from IEEE Xplore.  Restrictions apply.



YUAN and YU: JOINT SOURCE CODING, ROUTING AND POWER ALLOCATION IN WIRELESS SENSOR NETWORKS 891

each sensor is quantized into a codeword ui, which is to be
transmitted to the CEO. The estimation of θ at the CEO is
based on (u1, · · · , uN). Since the observations (y1, ..., yN)
are correlated, the codewords (u1, ..., uN) are also correlated.
Slepian-Wolf coding [21] can then be applied to (u1, · · · , uN)
to achieve a rate bound as expressed in the conditional mutual
information in (13).

In general, the computation of the Berger-Tung achievable
rate region for distributed source coding is difficult because
it involves an optimization of conditional mutual information
over the conditional distribution ΠN

i=1p(ui|yi). In this paper,
we make several simplifying assumptions to arrive at a sub-
optimal but computationally feasible rate-distortion region.
The main idea is to ignore the possibility of Slepian-Wolf
coding when transmitting correlated ui back to the CEO. More
specifically, the following rates are sufficient for achieving the
distortion constraint

si ≥ I(yi; ui), ∀ i = 1, · · · , N (14)

Here, each ui again represents a quantized version of yi.
However, the set of (u1, · · · , uN ) is transmitted to the CEO
without taking advantage of the fact that they are correlated,
while the estimation of θ at the CEO is still based on all of
(u1, · · · , uN ). The rate region (14) is simpler to evaluate than
(13) because no conditional mutual information is involved.

We now consider the special Gaussian case to illustrate this
simplified Berger-Tung region. Let us assume that θ is an
independent Gaussian vector with zero mean and a diagonal
covariance matrix Σθ. Let the distortion measure be the mean-
squared-error (MSE) measure, i.e. d = diag(E[(θ̂ − θ)(θ̂ −
θ)T ]). Let the observation noise n be independent Gaussian
with zero mean and covariance matrix Σn. Let us further
assume that an ideal Gaussian rate-distortion vector quantizer
is used, so that q can be modeled as a zero-mean Gaussian
random vector with a diagonal covariance matrix Σq.

Under the Gaussian assumption, the achievable rate for the
simplified Berger-Tung region can be computed as

si ≥ I(yi; ui) =
1
2

log
(

hT
i Σθhi + σ2

ni + σ2
qi

σ2
qi

)
(15)

where hT
i is the ith row of channel matrix H , σ2

ni and σ2
qi

are the ith diagonal element of Σn and Σq , which represent
the noise variance and quantization variance respectively, and
Σθ is the covariance matrix of the underlying source vector
θ. In this paper, we assume that the source and the noise are
stationary, and assume that Σθ and Σn are known a priori.

The corresponding distortion can likewise be computed
using the minimum mean-squared-error (MMSE) estimation
theory. At the CEO, the optimal estimation θ̂ and the corre-
sponding estimation error covariance matrix K0 are

θ̂ = E[θ|u] = ΣθuΣ−1
uuu

K0 = E

[(
θ − θ̂

)(
θ − θ̂

)T
]

= Σθ − ΣθuΣ−1
uuΣuθ

= Σθ − ΣθH
T (HΣθH

T + Σn + Σq)
−1HΣT

θ

The distortion vector d is then a vector of the diagonal
elements of K0, i.e. d = diag(K0). Note that the distortion
implicitly depends on all quantization levels. This distortion

expression characterizes the coupled relation among the sen-
sors.

The optimization problem is that of minimizing αT d+λT s.
For simplicity, the rest of the paper considers sum distortion
only, i.e. αT = 1T . In this case, αT d = tr(K0). Also, for
reasons that will be clear later, it is convenient to define a new
variable wi = 1/(σ2

ni + σ2
qi). We call w quantization effort.

Note that quantization effort w has a one-to-one relation with
the quantization variance σ2

q , i.e. σ2
qi = 1

wi
− σ2

ni, Σ
−1
w =

Σn + Σq . Further, denote σ2
si = hT

i Σθhi.

The source coding subproblem (3) can now be reformulated
as follows:

minimize tr (Σθ) − tr
(
ΣθH

T (HΣθH
T + Σ−1

w )−1HΣT
θ

)
+

N∑
i=1

λi log
(

1 + σ2
siwi

1 − σ2
niwi

)
(16)

subject to 0 ≤ wi ≤ 1
σ2

ni

, σ2
si = hT

i Σθhi i = 1, ..., N

where Σw is a diagonal matrix with wi as the ith diagonal
element. The first two terms in (16) are the MMSE distortion
estimation. We absorb 1

2 term of (15) into λ in the third term
of (16). For notational convenience, the objective function of
(16) is referred to as QAPP later in the paper.

Note that s and d are determined given w. Thus, the
optimization is over the variable w. The parameterization of
the optimization problem over w is useful, because under
certain conditions, the optimization problem is convex over w,
which greatly facilitates the task of finding the global optimal
solution.

Definition 1: The source coding optimality condition holds,
if either of the following is true:

• σ2
ni ≥ σ2

si, ∀i (17)

• σ2
ni < σ2

si and σ2
qi ∈

[
0,

σ2
si + σ2

ni

σ2
si − σ2

ni

σ2
ni

]
, ∀i (18)

where σ2
si = hT

i Σθhi.

Theorem 2: The source coding subproblem (16) is a convex
optimization problem under the source coding optimality
condition.

A detailed proof is not presented here due to space con-
straint. The proof consists of showing that the objective
function of (16) is convex in w by checking that its Hessian
is positive semidefinite under the source coding optimality
condition. A complete proof can be found in [22].

The conditions under which convexity holds have the fol-
lowing interpretation. Convexity holds whenever the sensor
noise variance is larger than the source variance. When the
sensor noise variance is smaller than the source variance,
convexity holds when the quantization noise (or equivalently
quantizer resolution) is smaller than the sensor noise variance
times a constant, which is larger than 1. In most practical
situations, the quantizers are designed so that the quantization
noise is below the sensor noise. Thus, convexity usually holds
in a well-designed sensor network.
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B. Physical Layer: Power Control Subproblem

We now turn to the physical-layer subproblem and present a
capacity region formulation for a wireless network. The funda-
mental issues are power control and interference management.
We use the notion of power-capacity region (more rigorously,
the achievable rate region) to characterize a tradeoff between
achievable rates at different links and the transmit power
levels. We assume each link treats the interference from
neighboring links as additive noise. In this case, the power
control subproblem (4) can be stated as follows:

maximize
∑

l

μlcl −
∑

l

βlpl (19)

subject to cl =
1
2
log

(
1 +

1
Γ

SINRl

)
l = 1, ..., L

SINRl =
Gllpl∑

j �=l Gljpj + σ2
l

l = 1, ..., L

0 ≤ pl ≤ pl,max l = 1, ..., L

where cl is the capacity of link l. An SINR gap term Γ is used
in the rate expression to take into account practical effects of
modulation scheme, bit error rate (BER), and error correct
code. For example, for uncoded QAM constellations, at bit
error rate P̄e = 10−6, the gap is 8.8 dB. Here, SINRl is the
signal-to-interference-and-noise ratio of link l, pl and σ2

l are
power and noise respectively, Gll denotes the effective channel
gain between the transmitter and receiver of link l, and Glj is
the interference coefficient from link j to link l. Each link has
a power constraint pl,max. Again, for notational convenience,
the objective function of (19) is referred to as QPHY later in
the paper.

As mentioned earlier, the optimization framework presented
in this paper is most applicable to either static networks in
which channel gains are fixed or slow-fading networks in
which fading coefficients can be estimated and fedback to
the CEO for network optimization. The interference term in
the SINR expression makes (19) a nonconvex function of
p = [p1, ..., pL]T . Consequently, the power control problem
is not a convex optimization problem and is difficult to solve.

Fortunately, in the physical layer, it is often possible to
operate in time-sharing points of different directly achievable
rate points, which ensure the convexity of the overall power-
capacity region. Time-sharing can be implemented either via
time-division multiplexing if the network is synchronized, or
via frequency-division multiplexing, if independent transmis-
sions may be implemented in multiple frequency bands. In
the next section, we take advantage of this observation to
convexify the problem.

IV. ALGORITHMS

When the rate-distortion or the power-capacity region op-
timization problem is nonconvex, the optimal solutions to
the source-coding and power control subproblems become
numerically difficult to find. Nevertheless, local search strate-
gies can often be used to identify efficiently computable, yet
suboptimal, solutions. However, the lack of convexity also
makes the convergence of the dual algorithm a difficult issue.
In this section, we propose the use of a column-generation
method, which, when combined with a coordinate-descent

algorithm for the subproblems, guarantees the convergence of
the overall network optimization problem.

A. Coordinate-Descent Algorithms for Subproblems

A local optimum of nonconvex optimization problems
can be found using many different methods. A particularly
effective local search is the coordinate-descent method, in
which a multivariable function is optimized over each variable
iteratively. When applied to the source coding subproblem (16)
and the power control subproblem (19), the algorithm works
as follows:

Algorithm 2: Source Coding Algorithm

1) Initialize (w(0)
1 , · · · , w

(0)
N ).

2) At each round, sequentially update each sensor’s quan-
tization effort wi as follows:
w

(τ+1)
i

= argminwi
QAPP

(
w

(τ+1)
1 , · · · , w

(τ+1)
i−1 , wi, w

(τ)
i+1, · · · , w

(τ)
N

)
i = 1, · · · , N

3) Set τ = τ + 1. Repeat 2) until convergence.

Algorithm 3: Power Control Algorithm

1) Initialize (p(0)
1 , · · · , p

(0)
L ).

2) At each round, sequentially update each link’s power
allocation pl as follows.
p
(τ+1)
l

= argmaxpl
QPHY

(
p
(τ+1)
1 , · · · , p

(τ+1)
l−1 , pl, p

(τ)
l+1, · · · , p

(τ)
L

)
l = 1, · · · , L

3) Set τ = τ + 1. Repeat 2) until convergence.

The updates of wi and pl in Step 2 of Algorithm 2 and
Algorithm 3 are based on individual optimization of each wi

and pl assuming that all other variables wj,j �=i and pk,k �=l are
held fixed. Such an optimization step can be done centrally via
a one-dimensional search, which is computationally feasible.

The convergence of the source coding algorithm and the
power control algorithm can be easily established based on
the monotonicity of the optimization steps (see e.g., [23,
Prop 2.7.1])3. Further, since the objective functions QAPP

and QPHY are continuously differentiable in w and p, the
coordinate-descent-based Algorithm 2 and Algorithm 3 would
converge to stationary points, which are local optima of the
source coding and power control subproblems. Finally, when
the problem is convex (e.g., under the source coding opti-
mality condition (17) or (18) for the source coding problem),
coordinate descent reaches a global optimum.

B. Column-Generation Method

Although Algorithm 2 and Algorithm 3 can be used to com-
pute locally optimal points for the two subproblems efficiently,
because the objective functions are nonconvex, the local
optimal solutions are not necessarily globally optimal. The
main purpose of this section is to propose the use of a column-
generation technique that allows efficient representations of

3Technically, the convergence of w(τ) and p(τ) also requires a condition
that the optimum in each step is uniquely attained. However, this condition
can be circumvented by adding a small quadrature term in the iterative process
[23].
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Fig. 4. (a) Convexifying the rate-distortion subregion (b) Convexifying the
power-capacity subregion.

rate-distortion and power-capacity subregions based on locally
optimal solutions.

The column-generation method basically collects different
solution points from the iterative algorithm, and convexifies
the region by time sharing among these points. Let Co{}
denote the convex hull operator. Then, each time a new rate-
distortion pair or a new power-capacity pair is found, we
update the respective regions by

R(t)
sub = Co

{
R(t−1)

sub

⋃ (
s′

d′

)(t)
}

C(t)
sub = Co

{
C(t−1)
sub

⋃ (
c′

p′

)(t)
}

where R(t)
sub and C(t)

sub are the convexified subregions up to

time t, and

(
s′

d′

)(t)

,

(
c′

p′

)(t)

are the solutions found

using Algorithm 2 and Algorithm 3 respectively at time t.
These newly found solutions are essentially new modes of
operations for the network. The column-generation method
allows the network to operate at time-sharing points among
these modes.

This convexification process can be incorporated into the
overall dual iterative algorithm with different rate-distortion
and power-capacity points generated in each iteration step.
Clearly, the result of this convexification process does not nec-
essarily converge to the full rate-distortion or power-capacity
regions, since only local optimal solutions are obtained in each
step. Nevertheless, as it is in general difficult to enumerate
all extreme points of the full region explicitly, the subregions
R(t)

sub and C(t)
sub are reasonable alternatives. The subregions are

upper bounded by the full-regions and they are always convex.
The convexifying process for the rate-distortion subregion

is illustrated in Fig. 4(a). The shaded area at the bottom plane
is the set of source rates that allow the reconstruction of the
underlying source at distortion d, while the shaded area at the
top plane is the set of source rates that allow reconstruction
at distortion d′. For example, two source coding schemes (A
and B) achieve two distortion levels (d′ and d) at source rates
(s′ and s), respectively. Using scheme A for a fixed portion
of the time and scheme B for the remaining time achieves
all points between A and B. The dashed line between the

new point

(
s′

d′

)(t)

A

and R(t−1)
sub represents the convexifying

process by time sharing. A similar process applies to power-
capacity subregion as shown in Fig. 4(b).

C. Dual Decomposition Algorithm with Column-Generation

We now present our main algorithm: a dual decomposition
algorithm for joint source coding, routing, and power allo-
cation problem. This dual algorithm, when combined with a
column-generation method, allows an efficient solution for the
joint optimization problem (1).

Algorithm 4: Dual Decomposition Algorithm with Column
Generation

1) Initialize λ(0) and subregions C(0)
sub, R(0)

sub.
2) At time t, set λ = λ(t), μT = λT A.

2.1) Compute

Source Coding Algorithm 2 → sG,dG

Power Control Algorithm 3 → cG,pG{
min
s,d

αT d + λT s
∣∣∣ (

s
d

)
∈ R(t)

sub

}
→ s∗sub,d

∗
sub{

max
c,p

μT c − βT p
∣∣∣ ( c

p

)
∈ C(t)

sub

}
→ c∗sub,p∗

sub

2.2) Update the source rate and the rate-distortion
subregion:

If αT dG + λT sG < αT d∗
sub + λT s∗sub

s∗ = sG, R(t+1)
sub = Co

{
R(t)

sub

⋃ (
sG

dG

)}
If αT dG + λT sG ≥ αT d∗

sub + λT s∗sub

s∗ = s∗sub, R(t+1)
sub = R(t)

sub

2.3) Update the link capacity and the power-capacity
subregion:

If μT cG − βTpG > μT c∗sub − βTp∗
sub

c∗ = cG, C(t+1)
sub = Co

{
C(t)
sub

⋃ (
cG

pG

)}
If μT cG − βTpG ≤ μT c∗sub − βTp∗

sub

c∗ = c∗sub, C(t+1)
sub = C(t)

sub

3) In dual domain, update λ using the following rule:

λ(t+1) =
[
λ(t) + ε(t)(s∗ − Ac∗)

]+

(20)

4) Set t = t+1. Return to Step 2 until subregions converge.
5) Given the converged subregions, solve the following

linear programming problem to obtain a solution for
problem (1):

minimize αT d + βT p (21)

subject to
(

s
d

)
=

∑
k

γk

(
s
d

)sub

k∑
k

γk = 1, γk ≥ 0

(
c
p

)
=

∑
j

πj

(
c
p

)sub

j∑
k

πj = 1, πj ≥ 0

Ac ≥ s

Authorized licensed use limited to: The University of Toronto. Downloaded on February 23, 2009 at 12:47 from IEEE Xplore.  Restrictions apply.



894 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 6, JUNE 2008

In the initialization step, the subregions are set to be
empty sets. By convention, the source coding minimization
subproblem returns a value of infinity when the rate-distortion
subregion is an empty set. Similarly, the power allocation
maximization subproblem returns a value of zero when the
power-capacity subregion is an empty set.

In Step 2.1, source coding Algorithm 2 and power control
Algorithm 3 are used to obtain new local optimal solutions
(sG,dG) and (cG,pG) for the application-layer and physical-
layer subproblems, respectively. Since the dual variables λ and
μ are newly updated in each step, (sG,dG) and (cG,pG) can
potentially be new extreme points of the current achievable
rate-distortion and power-capacity subregions. The subregions
Rsub and Csub are updated when this happens. To test whether
the new points are outside of the current subregions, Steps
2.2 and 2.3 compare the new points with the optimal points
(s∗sub,d∗

sub) and (c∗sub,p∗
sub) inside the current R(t)

sub and C(t)
sub

using the current λ and μ. Since the subregions are polytopes
defined by their extreme points, the solutions for the sub-
problems can be obtained efficiently by linear programming.

In particular, let

(
s
d

)sub

k=1,··· ,K
and

(
p
d

)sub

j=1,··· ,J
denote

the extreme points in subregions. The rate-distortion region
problem is

minimize αTd + λT s (22)

subject to
(

s
d

)
=

∑
k

γk

(
s
d

)sub

k∑
k

γk = 1, γk ≥ 0

The power-capacity region problem is

maximize μT c − βTp (23)

subject to
(

c
p

)
=

∑
j

πj

(
c
p

)sub

j∑
j

πj = 1, πj ≥ 0

Note that the solutions to the above linear program problems
may be nonunique. Nevertheless, the algorithm works as long
as one valid solution is given.

In Step 3, the dual variables are updated according to the
rate demand s∗ and rate supply Ac∗. Step 4 increases the
outer loop time index and checks for the convergence of the
subregions. Since the subregions Rsub and Csub are upper
bounded by the full regions and they are monotonically non-
contracting in the iterative process, the algorithm is guaranteed
to converge. Once the subregions converge, Step 5 computes
the final solution based on the extreme points of the subregions(

s
d

)sub

k

and

(
c
p

)sub

k

using another linear programming

step.
Note that the outer loop of the Algorithm 4 is indexed by t.

The inner loops, i.e. the source coding Algorithm 2 and power
control Algorithm 3 of Step 2.1 are indexed by τ .

The solution from Step 5 is always primal feasible, but it
may not be globally optimal in general, because only local
optimal points are generated in the iterative steps. For small
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Fig. 5. Topology of a wireless sensor network.

networks, it is possible to bound the difference between the
current solution and the true optimum using a duality-gap
technique (combined with exhaustive search); see e.g., [7].
Our simulation experience on small networks suggests that
the proposed algorithm is sometimes capable of reaching a
solution close to the global optimum. However, because the
underlying capacity region maximization problem is inherently
nonconvex, it is in general difficult to guarantee that the
solution would always be close to the optimum.

The solution obtained from the proposed algorithm can
either take the form of a single local optimal point of a sub-
region (i.e. a single column), or the time-sharing of multiple
local optimal points. The time-sharing factor is automatically
determined by the linear programming step (i.e. Step 5). If
the obtained solution is a single local optimal point, the
appropriate quantization and power allocation settings can
be delivered directly to the sensors. To implement a time-
sharing solution, a synchronization mechanism needs to be
implemented. Alternatively, time-sharing of multiple physical-
layer power allocation schemes can also be implemented in
the frequency domain.

The column-generation method presented here is inspired
by the work of [7]. However, the current approach also differs
from that of [7] in the sense that Algorithm 4 does not require
the power control subproblem (19) to be solved optimally,
which is computationally difficult in general. Instead, we allow
local optimal points, which can be computed efficiently using
iterative methods, to be added in each step. Further, the current
work also generalizes that of [7] by applying the column-
generation method to the rate-distortion problem.

The column-generation method requires centralized control
because of the need for time-sharing operations that convexify
the subregions. This suggests that Algorithm 4 should be run
at CEO, which usually has more computational resource and
is able to centrally collect and estimate network parameters
such as observation channel matrix and wireless channel
coefficients.

V. SIMULATION EXAMPLE

We now present simulation results on a wireless sensor
network example to illustrate the main ideas of this paper. The
network topology is shown in Fig. 5. The underlying physical
source is modeled as a two-dimension Gaussian vector with
an identity covariance matrix. For the sake of simplicity, we
assume that two nodes closest to the source (e.g., sensors 1
and 2) are active in sensing the field, while the rest of the
nodes act as relays.
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Fig. 6. Convergence process of the dual variables. Each curve in the figure
on the left represents a dual variable λi for each node. Each curve in the
figure on the right represents a dual variable μl for each link. The x-axis
corresponds to the iteration index t in Algorithm 4.
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capacities at the two sensing nodes. The source rates eventually match the
aggregated link capacities. The link capacities oscillate between two modes
of operation, implying that the optimal solution is a time-sharing point of the
two modes. The x-axis corresponds to the iteration index t in Algorithm 4.

The wireless channel coefficients Glj are modeled using
a deterministic path loss model, i.e. Glj = Kljd

−ρ
lj , where

dlj is the distance between the transmitter of link j and the
receiver of the link l, ρ is a deterministic path loss exponent,
and Klj is a normalization constant, which depends on the
propagation characteristics of the environment. In this exam-
ple, ρ is set to 4, and Klj’s are generated from a log-normal
distribution, modeling log-normal shadowing. In addition, the
sensor nodes are assumed to be capable of transmitting in
multiple frequency subbands in the physical layer. Independent
transmission takes place in each subband; transmit power may
be freely allocated among the subbands; the achievable link
capacity is the sum of subband transmission rates. This enables
the implementation of time-sharing solution in the frequency
domain.

We use the proposed dual decomposition algorithm with
column-generation to find the jointly optimal source coding,
routing and power allocation for the network. Fig. 6 shows
the convergence process of the dual variables λ and μ. Each
curve in the left figure corresponds to a dual variable λi for
each node; each curve in the right figure corresponds to μl for
each link. As shown in the figure, all dual variables converge.

Fig. 7 plots the convergence behavior of the source rates at
the two sensing nodes (dashed line) and the aggregated out-
going link rates from the sensing nodes (solid line). The con-
vergence process illustrates the interaction between the aggre-
gated application-layer demand and the aggregated physical-
layer supply of rates. At the beginning, the application-layer
demand for rates is low, while the physical-layer supply for
link capacities is high. As the supply is greater than the
demand, the node prices λ would decrease as shown in Fig. 6.
Due to the change in prices, the physical layer would reduce
its capacities, while the application layer would increase its
source rates. This negotiation process is coordinated by the
dual variables. Eventually, the source rates reach a steady state.
However, the link capacities fluctuate among two different
modes of operation. This is due to the fact that the power-
capacity subregion is a polytope. Thus, a small change in
the dual variables may cause the optimal primal variable to
oscillate between neighboring vertices. This implies that time-
sharing between the vertices is needed to achieve the optimum.
As in Step 5 of Algorithm 4, the optimal time-sharing factors
can be found by solving the linear programming problem (21).
Further, it is important to realize that oscillation occurs only
among a few points. Thus, the computational complexity of
linear programming can be reduced by considering only these
few points4.

For the particular example presented here, the optimal
solution consists of source rates s1 = 0.435, s2 = 0.538,
s3 = · · · = s9 = 0 and link capacities c1 = 0.436, c2 = 0,
c3 = 0.309, c4 = 0.229, c5 = 0.126, c6 = 0.317, c7 = 0.360,
c8 = 0.286, c9 = 0.309, c10 = 0.649, c11 = 0.035,
c12 = 0.309, c13 = 0.650, and c14 = 0. The corresponding
distortion is αTd = 1.62. It is interesting to note that the
optimized capacities for link 2 and link 14 are both zero. The
optimal capacity for link 14 is zero, because operating long
distance links is not power efficient. Moreover, the fact that
link 2 has a zero optimal capacity indicates that node 1 can
find an alternative route to the CEO without going through
node 2.

It is also interesting to observe that the solution of link
capacities and source rates from Algorithm 4 satisfies flow
conservation exactly, i.e. Ac = s. Therefore, the solution
is energy efficient in the sense that there are no slack link
capacities.

The iteration number in Fig. 6 and Fig. 7 corresponds to
the number of dual variable λ update (indexed by t). This is
the number of outer-loop iterations in Algorithm 4. For each
outer iteration step, the source coding Algorithm 2 and the
power control Algorithm 3 are used to obtain local optimum
solutions for the two subproblems. For the particular setup of
Fig. 5, Algorithm 4 takes around 300 outer-loop iterations to
converge, while the source coding algorithm takes an average
of 2 inner-loop iterations and the power control algorithm
takes an average of 8 inner-loop iterations to converge.

4Note that during the iteration process, columns that are in the interior of
the rate-distortion and power-capacity subregions may be pruned to maintain
an economic representation of the subregions.
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VI. CONCLUSIONS

This paper proposes a general framework for the cross-layer
optimization of wireless sensor networks. Using a Lagrangian
dual approach, we show that the joint source coding, routing
and power allocation problem in a wireless sensor network
can be naturally decomposed into two subproblems: a power
allocation subproblem at the physical layer and a source
coding subproblem at the application layer, with a set of dual
variables coordinating the two layers. This dual decomposition
approach allows the overall problem to be solved efficiently
in a modular fashion.

Our approach is facilitated by a number of technical devel-
opments. We introduce a simplified source coding model to
characterize the rate-distortion region at the application layer;
we devise iterative algorithms for achieving local optimal
solutions to the source coding and power allocation problems;
we incorporate a column-generation method to ensure the
convexity of the rate-distortion and power-capacity regions and
the efficient solution of the overall joint optimization problem.
Our approach can be thought of as a generalization of the
network utility maximization problem in which the overall
utility is coupled across the nodes. This paper presents a
natural framework to model and to utilize this coupling – a
crucial task in sensor network design.
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