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Abstract—This paper studies an uplink multicell joint process-
ing model in which the base-stations are connected to a central-
ized processing server via rate-limited digital backhaul links. We
propose a simple scheme that performs Wyner-Ziv compress-
and-forward relaying on a per-base-station basis followed by
successive interference cancellation (SIC) at the central processor.
The proposed scheme has a significantly reduced complexity as
compared to joint decoding, resulting in an easily computable
achievable rate region. Although suboptimal in general, this
paper shows that the proposed per-base-station SIC scheme can
achieve the sum capacity of a special Wyner cellular model
to within a constant gap. This paper also establishes that in
order to achieve to within a constant gap to the maximum
SIC rate with infinite backhaul, the limited-backhaul system
must have backhaul capacities that scale logarithmically with
the signal-to-interference-and-noise ratios (SINRs) at the base-
stations. Further, this paper studies the optimal backhaul rate
allocation problem for the per-base-station SIC model with a
total backhaul capacity constraint, and shows that the sum-rate
maximizing allocation should also have individual backhaul rates
that scale logarithmically with the SINR at each base-station.
Finally, the proposed per-base-station SIC scheme is evaluated
in a practical multicell network to quantify the performance gain
brought by multicell processing.

Index Terms—Coordinated multi-point (CoMP), interference
channel, limited backhaul network multiple-input multiple-
output (MIMO), relay channel, successive interference cancel-
lation, Wyner-Ziv coding

I. INTRODUCTION

Traditional wireless cellular networks operate on a cell-by-
cell basis where out-of-cell interference is treated as part of
the noise. However, as cellular base-stations become more
densely deployed and heterogeneous networks become com-
monplace where small cells overlap heavily with macro-
cells, modern cellular networks are becoming increasingly
interference limited. Because of the intercell interference, the
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per-cell achievable rates in traditional cellular deployments are
typically much smaller than that of a single isolated cell.

Multicell joint processing is a promising technique that has
the potential to significantly improve the cellular throughput by
taking advantage of its capability for intercell interference mit-
igation. When base-stations share the transmitted and received
signals, the codebooks, and the channel state information
(CSI) with each other through high-capacity backhaul, it is
theoretically possible to perform joint transmission in the
downlink and joint reception in the uplink to eliminate out-
of-cell interference completely. This paper deals with the in-
formation theoretical capacity analysis of the joint-processing
architecture in the uplink. In this architecture, antennas from
multiple base-stations essentially become a virtual multiple-
input multiple-output (MIMO) array capable of spatial multi-
plexing multiple user terminals.

One way to implement a multicell joint processing system
is to deploy a centralized processing server which is connected
to all the base-stations via high-capacity backhaul links. When
the capacities of the backhaul links are sufficiently large, the
joint processing system implemented across the different cells
in the network can be modeled as a multiple-access channel
in the uplink and a broadcast channel in the downlink, giving
rise to the concept of network MIMO [1], [2].

The practical implementation of a network MIMO system
must also consider the effect of finite capacity in the back-
haul. While the capacity of the network MIMO system with
infinite backhaul is easy to compute, when finite backhaul is
considered, the information theoretical analysis of multicell
processing becomes significantly more complicated. This pa-
per focuses on an uplink network MIMO model as shown in
Fig. 1. From an information theoretical perspective, the overall
system can be thought of as a combination of a multiple-access
channel (with remote terminals acting as the transmitters and
the centralized processor as the receiver) and a relay channel
(with the base-stations acting as relays).

A. Related Work
The uplink network MIMO model considered in this paper,

where the joint processing takes place in the central server, is
related to but is different from the multicell joint processing
model with finite-capacity uni- or bi-direction backhaul links
deployed between the base-stations. In this latter setting, the
uplink multicell model becomes an interference channel with
partial receiver cooperation. Although a complete characteri-
zation of capacity for such a model is still an open problem,
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Fig. 1. Uplink multicell joint processing via a centralized processor

information theoretical studies have been carried out for the
case of two-user Gaussian interference channel with receiver
cooperation [3]–[7]. Likewise, the analysis of uplink cellular
network under this setup has been carried out in [8], [9],
where strategies such as decode-and-forward and compress-
and-forward are proposed, and analytical results under the
Wyner model are obtained. We mention briefly here that the
downlink counterpart of this model has been studied in [10].

For the uplink multicell joint processing model considered
in this paper, where the limited-capacity backhaul links are
deployed between the base-stations and a central processor
as depicted in Fig. 1, although a complete characterization
of its information theoretical capacity region is also an open
problem, much work has been done on finding its achievable
rate region and the gap to the outer bound [11]–[16]. The early
work by Sanderovich et al. [11] considers a joint decoding
scheme in which the base-stations quantize the received signals
and forward them to the centralized processor, which then
performs joint decoding of both the source messages and
quantized codewords. Instead of joint decoding, [14], [15]
describe schemes which successively decode the quantization
codewords first, then the source messages. A comparison of
successive decoding vs. joint decoding is contained in [16].
Alternatively, base-stations can also decode part of the mes-
sages of users in their own cell, then forward the decoded data
along with the remaining part to the centralized processor [11],
[12], [17]. The counterpart of these results for the downlink
with finite backhaul has been described in [18]. A review of
some of these results is available in [2].

The uplink multicell joint processing model is actually a
special case of a general multiple multicast relay network
studied in [19], [20], for which a generalization of quantize-
and-forword can be shown to achieve to within a constant gap
to the information theoretical capacity of the overall network.
This is proved in [19] using a quantize-map-and-forward tech-
nique, and in [20] using noisy network coding, both of which
require the joint decoding of the source messages and the
quantized codewords. Thus in retrospect, the joint processing
scheme of [11] already achieves the approximate capacity
of the uplink finite-backhaul multicell model, provided that
the quantization noise level is appropriately chosen and joint
decoding is done at the central processor.

It should be emphasized that joint decoding is challenging
to implement. Not only is the network-wide CSI required at

the central processor, the computational complexity of joint
decoding typically scales exponentially with the total number
of nodes in the network. Moreover, even a mere evaluation
of the achievable rate can be computationally prohibitive.
The achievable rate region of the joint decoding scheme
as presented in [11, Proposition IV.1] involves 2L − 1 rate
constraints, each requiring a minimization of 2L terms, where
L is the number of users in the uplink multicell model. To
obtain analytical results, [11] and likewise [9], [21] assume
certain symmetry and obtain rate expressions under a Wyner
cellular model. But the rate expression for an arbitrary network
remains difficult to evaluate. On top of this, the achievable rate
region needs to be optimized over all choices of L quantization
noise levels, which is a difficult task, although recent progress
has been made in [14], [16], [22].

B. Main Results
To fully overcome the aforementioned difficulty yet still

take full advantage of the centralized processing is expected
to be challenging. This paper instead aims to design schemes
with simple receiver structures that result in computationally
feasible achievable rate regions for the uplink multicell joint
processing problem. Toward this end, this paper focuses on
the uplink multicell model with finite-capacity backhaul to
the centralized processor, and proposes suboptimal schemes
based on successive interference cancellation (SIC). Instead
of performing joint decoding of the source messages and
quantization codewords [11], or successive decoding of all the
quantization codewords first, then the source messages [14],
[15], this paper applies the Wyner-Ziv compress-and-forward
relaying scheme on a per-base-station basis and performs
single-user decoding with SIC at the centralized processor.
The Wyner-Ziv coding here also uses the previously decoded
messages as side information. The main advantage of this
proposed scheme is that it leads to a receiver architecture in
which only the decoded transmit signals are shared between
the successive stages, so it is more amenable to implementa-
tion. Further, the quantization noise levels can now be easily
optimized, resulting in an achievable rate region computable
with complexity that scales linearly with L.

Although the proposed per-base-station SIC scheme is no
longer the best possible for a general uplink joint processing
model, this paper shows that for a special Wyner soft-handoff
model [23], in which the mobile terminals and the base-
stations are placed along a line, the proposed per-base-station
SIC scheme achieves a sum rate that is at most a constant gap
away from capacity. This paper shows that the constant gap
is a linear function of the number of transmitter-receiver pairs
in the uplink multicell joint processing model.

Under the proposed per-base-station SIC framework for
the finite-backhaul uplink model, we also ask the following
question: How much backhaul capacity is needed to approach
the theoretical infinite-backhaul successive-decoding rate? The
results of this paper show that the backhaul rates need to scale
logarithmically with the received signal-to-interference-and-
noise ratio (SINR) in order to achieve to within 1

2 bit of the
successive decoding rates attainable with unlimited backhaul
capacity.
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Further, this paper addresses the question of how to allocate
the backhaul rates optimally across the different backhaul
links. Under a sum rate constraint on the total backhaul
capacity, this paper shows that in order to maximize the
sum rate over the entire network, the allocation of individual
backhaul link capacity should again scale logarithmically with
the SINR under the proposed per-base-station SIC framework.

This paper focuses on capacity analysis with the assumption
that the CSI for the entire network is available at the central
processor. This is reasonable as the base-stations may estimate
the channel in the uplink, then send CSI via the backhaul links
to the central processor. For convenience, this paper neglects
the additional backhaul capacity needed to support the sharing
of CSI. We mention that the capacity of network MIMO under
channel estimation error has been investigated in [8]. Study on
the use of processing techniques that are robust against channel
uncertainty has been reported in [15].

Finally, under the perfect CSI assumption, this paper eval-
uates the performance of the proposed per-base-station SIC
scheme in an OFDMA network. Numerical simulations show
that the proposed per-base-station SIC scheme can almost
double the per-cell sum-rate over a baseline scheme where
no centralized processor is deployed and each base-station
simply treats interference as noise. Further, with optimized
backhaul capacity allocation, most of such gains can already
be obtained when the backhaul sum capacity is at about 1.5
times the achieved per-cell sum rate.

C. Organization of the Paper

The rest of the paper is organized as follows. Section
II presents the multicell joint processing model. Section III
introduces the per-base-station SIC scheme and compares it
with other achievability schemes such as noisy network coding
and joint-base-station processing. The optimality of the per-
base-station SIC scheme for the Wyner model is provided in
Section IV. The backhaul rate allocation problem with a total
backhaul constraint is solved in Section V. Finally, Section
VI numerically evaluates the per-base-station SIC scheme for
a two-user symmetric setting and for a realistic OFDMA
network.

II. CHANNEL MODEL

Consider the uplink of a multicell network with a central
processor. Assuming that there is only one user operating in
each time-frequency resource block in each cell, the multicell
network can be modelled by L users each sending a message
to their corresponding base-stations. Base-stations serve as
intermediate relays for the centralized server, which eventually
decodes all the transmit messages.

As depicted in Fig. 1, the uplink joint processing model
consists of two parts. The left half is an L-user interference
channel with Xi as the input signal from the ith user, Yi as
the output signal, Zi as the additive white Gaussian noise
(AWGN), and hij as the channel gain from user i to base-
station j, where i, j = 1, 2, · · · , L. The right half can be
seen as a noiseless multiple-access channel with capacities
Ci, i = 1, 2, · · · , L, modelling the backhaul links between the

base-stations and the central processor. The input signal Xi is
power constrained, i.e., E[|Xi|2] ≤ Pi; the receiver noises are
assumed to be independent and identically distributed with
Zi ∼ N (0, N0), i = 1, 2, · · · , L. The signal-to-noise ratios
(SNRs) and the interference-to-noise ratios (INRs) are defined
as follows:

SNRi =
h2iiPi
N0

, INRi,j =
h2ijPi

N0
, i, j = 1, · · · , L (1)

In addition, define the vectors X = {X1, X2, · · · , XL} and
Y = {Y1, Y2, · · · , YL}.

III. MULTICELL PROCESSING SCHEMES

This paper focuses on uplink multicell processing schemes
in which the base-stations quantize the received signals, then
subsequently transmit a function of the quantized signal to
the central processor via noiseless backhaul links. Quantize-
and-forward is a natural strategy in the uplink setting. This is
because in order to reap the benefit of multicell processing, the
user terminals must transmit at rates higher than that decodable
at its own base-station alone. This prevents the use of the
decode-and-forward strategy. In Fig. 1, the received signal is
denoted as Yi; its quantized version is denoted as Ŷi. This
paper also assumes that the base-stations either transmit Ŷi
directly, or performs a binning operation on Ŷi. The task at
the central processor is to decode {X1, X2, · · · , XL} based on
either {Ŷ1, Ŷ2, · · · , ŶL} or their bin indices. In the following,
we examine the information theoretical achievable rates for
various quantization and decoding strategies.

A. Joint Decoding

Consider a coding scheme in which each base-station
quantizes its received signal using a Gaussian codebook at
certain distortion or quantization noise level qi, bins the
quantized message, then forwards the bin index to the central
processor. In the joint decoding strategy, the central processor,
upon receiving all the bin indices, decodes {X1, X2, · · · , XL}
and {Ŷ1, Ŷ2, · · · , ŶL} jointly based on joint typicality. This
strategy is first proposed by Sanderovich et al. [11, Proposition
IV.1]. (Note that there is no requirement that {Ŷ1, Ŷ2, · · · , ŶL}
are decoded correctly; only {X1, X2, · · · , XL} need to.)

The key parameter here is the setting of the quantization
noise levels qi. For example, qi’s can be set to be such that
{Ŷ1, Ŷ2, · · · , ŶL} can be correctly decoded based on the bin
indices. The values of qi’s can then be determined based on
the capacities of the backhaul links (C1, C2, · · · , CL). But,
such a setting of qi may not be optimal. Indeed, as shown
in [19] and also later in [20], for a much larger class of
general relay networks, setting the quantization noise levels
to be at the background noise level, i.e., qi = N0, leads to an
achievable rate that is within at most a constant gap from the
capacity outer bound. This gap scales linearly with the number
of nodes in the network, but is independent of the channel
gains and the backhaul capacities. Applying this result to the
uplink multicell model in Fig. 1, we immediately have the
following joint decoding achievable rate. The achievable rate
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expression can be derived based on the noisy-network-coding
theorem [20], and is equivalent to the expression in [11].

Lemma 1. For the multicell joint processing model as shown
in Fig. 1, the following rate region is achievable

R(S) ≤ min
T ⊆L

{
1

2
log
∣∣I + Λ−1T c(N0 + q)HST cΛS(P )HT

ST c

∣∣
+
∑
i∈T

(
Ci −

1

2
log(1 +

N0

qi
)

)}
, ∀ S ⊆ L , {0, 1, · · · , L}

(2)

where R(S) =
∑
i∈S Ri, qi is a positive real number

representing the quantization noise level at base-station i,
HST c denotes for the transfer matrix from input X(S) to
output Y(T c), Λ−1T c(N0 + q) is a diagonal matrix of 1

N0+qi
with i ∈ T c, and ΛS(P ) is a diagonal matrix of Pi with
i ∈ S . This rate region is within a constant gap to the
capacity region of the multicell joint processing model if we
set qi = N0, i = 1, 2, · · · , L.

The above achievable rate region is valid for any choice
of qi, and is approximately optimal when qi = N0. But, the
evaluation of such an achievable rate region can be difficult.
For the uplink joint processing model, the achievable rate
region as derived in Lemma 1 requires a minimization of 2L

terms for each rate constraint, and there are 2L − 1 different
rate constraints describing the rate region. Even when the size
of the network is in a reasonable range, for example as in a
19-cell topology, it is computationally prohibitive to minimize
over 219 terms each involving 219−1 different rate constraints.
Further, the implementation of the joint decoding scheme itself
tends to have exponential complexity, so the achievable rate
given in Lemma 1 is not practically implementable for a
reasonably-sized network.

In order to derive more tractable performance analysis of the
multicell joint processing scheme, [11] resorts to a modified
Wyner model (see [23]), where each transmitter-receiver pair
interferes only with one other neighboring transmitter-receiver
pair, and is subject to interference from only one neighboring
transmitter-receiver pair. Further, certain symmetry is intro-
duced so that all the direct channels are identical, and so are
all interfering channels. With this symmetric cyclic structure,
computation of the sum rate becomes tractable under joint
decoding [11].

B. Per-Base-Station SIC

This paper focuses on the general multicell model (instead
of the symmetric Wyner model) and proposes suboptimal
schemes based on the successive decoding of source messages.
Based on the observation that the exponential complexity of
the rate expression in Lemma 1 is due to the joint decoding
step at the destination, this paper proposes a per-base-station
SIC approach (in contrast to joint-base-station SIC to be de-
scribed in detail later) at the centralized processor that signifi-
cantly reduces the complexity of computation of the achievable
rate region. In addition, the proposed scheme involves the

Centralized

Processor

Xk

hkk
Ck

Zk +
∑

j 6=k hjkXj

Yk : Ŷk Ŷk
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Fig. 2. Equivalent channel of user k in the kth decoding stage

use of compress-and-forward relaying technique [24] at each
base-station independently, which also significantly reduces
the complexity of its eventual implementation in a practical
system.

Specifically, we use an SIC approach assuming a fixed
order of decoding first X1, then X2, X3, · · · , XL. A central
feature of the proposed scheme is that only the decoded
signals are used as side information in subsequent stages. This
simplifies the sharing of information among the base-stations
and facilitates practical implementation.

At the kth stage, the base-station k, upon receiving Yk,
quantizes Yk into Ŷk using the compress-and-forward tech-
nique and sends bin index of Ŷk to the destination via the
noiseless link of capacity Ck. Note that the quantization
process at the base-station k includes interference from all
other users. The quantization noise level at each base-station
k is chosen so as to fully utilize Ck such that Ŷk can be
immediately recovered at the central processor. This quan-
tization process can be done either with Wyner-Ziv coding
that takes advantage of the already-decoded user messages
(X1, · · · , Xk−1) as side information, or without Wyner-Ziv
coding for ease of implementation.

At the central processor, to decode user k’s message Xk the
central processor first decodes the quantization message Ŷk
upon receiving its description from the digital link Ck. It then
decodes the message of user k using joint typicality decoding
between Xk and the quantized message Ŷk. The decoding of
Xk also takes advantage of the knowledge of previously de-
coded messages (X1, · · · , Xk−1) at the centralized processor.
In this way, the impact of interference from X1, · · · , Xk−1
eventually disappears and the effective interference is only due
to users not yet decoded, i.e., Xj , for j > k. After decoding
Xk, the central processor moves to the next decoding stage,
adding Xk to the set of known side information.

1) Per-Base-Station SIC with Wyner-Ziv: The following
theorem gives the achievable rate of the proposed per-base-
station SIC scheme with Wyner-Ziv compress-and-forward
relaying.

Theorem 1. For the uplink multicell joint processing channel
depicted in Fig. 1, the following rate is achievable using
Wyner-Ziv compress-and-forward relaying at the base-stations
followed by SIC at the centralized processor with a fixed
decoding order:

Rk =
1

2
log

1 + SINRk

1 + 2−2CkSINRk
, (3)

where

SINRk =
SNRk

1 +
∑
j>k INRj,k

. (4)
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Proof: In the kth stage of the SIC decoder, X1, · · · , Xk−1
decoded in the previous decoding stages serve as side informa-
tion for stage k. The equivalent channel of user k is depicted
in Fig. 2. This is a three-node relay channel without the
direct source-destination link. Specifically, the source signal
Xk is sent from the transmitter to the relay, which receives
Yk, quantizes it into Ŷk and forwards its description to the
centralized processor via the noiseless digital link of capacity
Ck. At the centralized processor, X1, · · · , Xk−1 serve as
side information and facilitate the decoding of Ŷk and Xk.
According to [24, Theorem 6], the achievable rate of user k
using Wyner-Ziv compress-and-forward can be written as

Rk = I(Xk; Ŷk|X1, · · · , Xk−1) (5)

subject to the constraint

I(Yk; Ŷk|X1, · · · , Xk−1) ≤ Ck. (6)

We constrain ourselves to Gaussian input signals Xk ∼
N (0, Pk), and the Gaussian quantization scheme1, i.e.,

Ŷk = Yk + ek, (7)

where ek ∼ N (0, qk) is the Gaussian quantization noise
independent of everything else. To fully utilize the digital link,
it is natural to set

I(Yk; Ŷk|X1, · · · , Xk−1) = Ck. (8)

Now, substituting Yk =
∑L
j=1 hjkXj +Zk and Ŷk = Yk + ek

into (8), we have

Ck = I(Yk; Ŷk|X1, · · · , Xk−1)

= h(Ŷk|X1, · · · , Xk−1)− h(ek)

=
1

2
log

(
1 +

N0 +
∑
j≥k h

2
jkPj

qk

)
, (9)

which results in the following quantization noise level that
fully utilizes the digital links Ck:

q∗k =
N0 +

∑
j≥k h

2
jkPj

22Ck − 1
. (10)

With the above q∗k, the achievable rate of user k can be
calculated as

Rk = I(Xk; Ŷk|X1, · · · , Xk−1)

= h(Ŷk|X1, · · · , Xk−1)− h(Ŷk|X1, · · · , Xk)

=
1

2
log

q∗k +N0 +
∑
j≥k h

2
jkPj

q∗k +N0 +
∑
j>k h

2
jkPj

=
1

2
log

N0 +
∑
j>k h

2
jkPj + h2kkPk

N0 +
∑
j>k h

2
jkPj + 2−2Ckh2kkPk

=
1

2
log

1 + SINRk

1 + 2−2CkSINRk
. (11)

Finally, note that SINRk =
h2
kkPk

N0+
∑

j>k h
2
jkPj

,which is equivalent
to (4).

1Gaussian input and Gaussian quantization are used for convenience and
for simplicity only. They are not necessarily optimal; see [12] for an example.
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Fig. 3. Achievable rate of user k versus the backhaul capacity Ck

The rate expression (3) shows how the achievable rates are
affected by the limited capacities of the digital backhaul links
under the proposed per-base-station SIC decoding framework.
Fig. 3 plots the achievable rate of Rk as a function of the
backhaul link capacity Ck with SINRk equal to 20dB. When
Ck is small, Rk grows almost linearly with Ck, which means
that each bit of the backhaul link provides approximately one
bit increase in the achievable rate for user k. The digital
backhaul is efficiently exploited in this regime. However, as Ck
grows larger, each bit of the backhaul link gives increasingly
less achievable rate improvement. In the limit of unbounded
backhaul capacity, i.e., Ck =∞, Rk saturates and approaches
1
2 log(1 + SINRk)

4
= R̄k, which is the upper limit for the rate

of user k when the SIC decoder is employed.
Since backhaul link capacity can be costly in practical

implementations, it is natural to ask how large Ck needs to
be in order to achieve a rate Rk that is close to the maximum
SIC rate with unlimited backhaul. It is easy to see that when
Ck = 1

2 log(1+SINRk), R̄k−Rk is upper bounded by one-half
bit, i.e.,

R̄k −Rk =
1

2
log(1 + SINRk)

− 1

2
log

1 + SINRk

1 + 2−2CkSINRk

∣∣∣∣
Ck=

1
2 log(1+SINRk)

=
1

2
log

(
1 +

SINRk

1 + SINRk

)
≤ 1

2
. (12)

Therefore, when the backhaul link has capacity Ck =
1
2 log(1 + SINRk), the achievable rate is half a bit away from
the SIC upper limit. This is also the point under which the
utilization of Ck is the most efficient, as shown in Fig. 3.

It is worth noting that the above result, which suggests that
Ck should scale as log(SINRk), is analogous to the conclusion
of [11, Corollary IV.6], which states that the backhaul rate
should scale as log(P ) in order to approach the capacity of
the infinite backhaul case for the symmetric Wyner model. The
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main difference is that this paper uses SIC, so interference not
yet cancelled still appears in the SINR expression.

2) Per-Base-Station SIC Without Wyner-Ziv: Implementing
the Wyner-Ziv compression may not be easy in practice. The
main difficulty lies in the binning operation that is necessary
in order to take advantage of the side information. To make
the proposed per-base-station SIC scheme more amenable
to practical implementation, the Wyner-Ziv quantizer can be
replaced by a simple vector quantizer that does not take side
information (i.e., previously decoded messages in the SIC
framework) into account. In this way, the following rate can
be achieved for user k:

Rk = I(Xk; Ŷk|X1, · · · , Xk−1) (13)

subject to the constraint

I(Yk; Ŷk) ≤ Ck, (14)

for k = 1, 2, · · · , L. Following the same lines of the proof of
Theorem 1, it is easy to see that by replacing (9) with Ck =

1
2 log

(
1 +

N0+
∑

j h
2
jkPj

qk

)
, which gives q∗k =

N0+
∑

j h
2
jkPj

22Ck−1 ,

we obtain

Rk =
1

2
log

q∗k +N0 +
∑
j≥k h

2
jkPj

q∗k +N0 +
∑
j>k h

2
jkPj

=
1

2
log

N0 +
∑
j≥k h

2
jkPj + 2−2Ck

∑
j<k h

2
jkPj

N0 +
∑
j>k h

2
jkPj + 2−2Ck

∑
j≥k h

2
jkPj

. (15)

Define

SINR
′
k =

h2kkPk
N0 +

∑
j>k h

2
jkPj + 2−2Ck

∑
j<k h

2
jkPj

. (16)

We have just proved that the following rate is achievable
using per-base-station SIC without Wyner-Ziv compress-and-
forward.

Theorem 2. For the uplink multicell joint processing channel
depicted in Fig. 1, the following rate is achievable using
vector quantization at the base-stations followed by SIC at
the centralized processor with a fixed decoding order:

Rk =
1

2
log

1 + SINR
′
k

1 + 2−2CkSINR
′
k

, (17)

where

SINR
′
k =

SNRk
1 +

∑
j>k SIRj,k + 2−2Ck

∑
j<k SIRj,k

. (18)

Comparing Theorem 2 with Theorem 1, it is easy to see that
achievable rates in (3) and (17) share the same structure. How-
ever, without Wyner-Ziv compression, the effective SINR (18)
becomes smaller due to the extra terms 2−2Ck

∑
j<k SIRj,k.

This means that the impact of previously decoded signals
X1, · · · , Xk−1 is not fully cancelled at stage k. We also note
that as Ck →∞, we have SINR

′
k → SINRk. Thus, Wyner-Ziv

coding is most useful only when the backhaul link capacity
is small. For reasonably large Ck, the benefit of Wyner-Ziv
coding is expected to be marginal.

C. Joint Base-Station SIC Schemes

The per-base-station SIC scheme takes advantage of mul-
ticell processing only in so far as to the use of the decoded
messages as side information. It is possible to further improve
upon these schemes by joint decoding across the base-stations.

Note that in the per-base-station SIC scheme, the decoding
of source messages and quantized messages follow the order
Ŷ1 → X1 → Ŷ2 → X2,→ · · · ,→ ŶL → XL, where in
the kth compression and decoding stage, previously decoded
source signals X1, · · · , Xk−1 are used as side information.
However, note that in the decoding process the quantization
codewords Ŷ1, · · · , Ŷk−1 are also decoded along the way, and
thus are also available for possible joint processing at stage
k, which can lead to better performance. In particular, we can
incorporate Ŷ1, · · · , Ŷk−1 in the expressions for Ck and Rk,
leading to the following achievable rate:

Rk = I(Xk; Ŷ1, · · · , Ŷk|X1, · · · , Xk−1), (19)

subject to

Ck ≥ I(Yk : Ŷk|X1, · · · , Xk−1, Ŷ1, · · · , Ŷk−1), (20)

for k = 1, 2, · · · , L.
Alternatively, we can also proceed in a two-stage successive

process of decoding all of {Ŷk}Lk=1 first, then {Xk}Lk=1 [14],
[15]. Further, each of these two stages can be accomplished
in an SIC fashion, resulting in rate expressions

Rk = I(Xk; Ŷ1, · · · , ŶL|X1, · · · , Xk−1), (21)

subject to
I(Yk; Ŷk|Ŷ1, · · · , Ŷk−1) ≤ Ck, (22)

for k = 1, 2, · · · , L. We note here that the above rate expres-
sions (19) and (21) can outperform the rates (3) in Theorem 1
and (17) in Theorem 2, because in the above expressions each
Xk is decoded based on the quantized observations of all
base-stations (or that of all previous decoded base-stations),
rather than just the kth base-station in the per-base-station SIC
scheme. However, for this same reason, the implementations of
the above joint-base-station SIC schemes are also expected to
be somewhat more complicated. For the rest of this paper, we
only focus on the per-base-station SIC schemes of Theorem 1
and Theorem 2, and leave the joint-base-station SIC schemes
as subject for future studies.

IV. APPROXIMATE OPTIMALITY OF PER-BASE-STATION
SIC IN A WYNER MODEL

The proposed per-base-station SIC scheme is in general sub-
optimal. However, in certain asymmetric settings, the per-base-
station SIC scheme can be shown to be approximately optimal
in the sense of achieving the sum capacity to within a constant
gap. This section studies a class of such asymmetric channels
in which each transmitter-receiver pair interferes only with one
neighbor and gets interfered by only one other neighbor as
shown in Fig. 4. This model is called the soft-handoff Wyner
model in the literature [23]. The Wyner model is an abstraction
of the cellular network to a one-dimensional setting. It can,
for example, model a communication scenario where base-
stations are placed along a highway and mobile terminals
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YL : ŶL
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Fig. 4. Wyner model where each transmitter-receiver only interferes with
one neighbor.

travel between the base-stations. This section proves that the
per-base-station SIC scheme achieves to within a constant gap
to capacity for the Wyner model. This result holds either with
or without Wyner-Ziv coding.

Consider first the per-base-station SIC with Wyner-Ziv
coding. Intuitively, decoding order plays an important role in
this asymmetric setting. Since receiver L sees a non-interfered
version of the source signal XL, decoding should take place
starting from user L. After XL is decoded, it can serve as side
information, which facilitates the decoding of user L−1, then
L − 2, etc. With this decoding order and applying the result
of Theorem 1 to the channel setting of Fig. 4, we arrive at the
following achievable rate region:{

Ri = I(Xi; Ŷi|Xi+1), i = 1, 2, · · · , L− 1

RL = I(XL; ŶL)
(23)

subject to{
I(Yi; Ŷi|Xi+1) ≤ Ci, i = 1, 2, · · · , L− 1

I(YL; ŶL) ≤ CL
(24)

which, when specialized to Gaussian inputs Xi ∼ N (0, Pi)
and the Gaussian quantization scheme: Ŷi = Yi + ei, where
ei is the quantization noise independent of everything else
and follows Gaussian distributions ei ∼ N (0, qi), gives the
following achievable rate

Ri =
1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)
, i = 1, 2, · · · , L. (25)

The achievable sum rate for the Wyner model with decoding
order from user L to user 1 is then

Rsum =

L∑
i=1

1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)
. (26)

The above sum rate can be slightly improved by noticing that
the Lth base-station can use decode-and-forward instead of
compress-and-forward, which leads to

RL = min

{
1

2
log(1 + SNRL), CL

}
. (27)

The main result of this section is that under a mild weak
interference condition, the sum rate achieved by the per-base-
station SIC scheme is at most a constant number of bits

away from the sum capacity for the Wyner model, so it is
approximately optimal in the high SNR regime.

Theorem 3. For a multicell processing Wyner model shown
in Fig. 4, in the weak-interference regime of INRi+1,i ≤
SNRi, i = 1, 2, · · · , L − 1, the per-base-station SIC scheme
with Wyner-Ziv coding achieves a sum rate that is within L− 1

2
bits of the sum capacity.

Proof: To show that the difference between the achievable
sum rate in (26) and the sum capacity is bounded by a
constant gap, we first write down the cut-set bound [25,
Theorem 14.10.1] for the Wyner channel model. Let L =
{1, 2, · · · , L} represent the index set for the base-stations.
We partition L into two sets, S and Sc, and only consider
cuts for which all the Xi’s and a selected subset of Yi’s,
with i ∈ S, are on one side, and the rest of the Yi’s, with
i ∈ Sc, and the central processor are on the other side. Denote
X(L) = {Xi | i ∈ L} and Y(Sc) = {Yi | i ∈ Sc}. We have
an upper bound to the cut-set bound as follows:

Rcut−set
sum ≤ max

p(X(L))
min
S⊆L

{
I (X(L);Y(Sc)) +

∑
i∈S

Ci

}

≤ min
S⊆L

{
max
p(X(L))

I (X(L);Y(Sc)) +
∑
i∈S

Ci

}
,

(28)

where the maximization is taken over all the possible joint
distributions of X(L), and the minimization is taken over 2L

different choices of cuts that separate the L transmitters and
the centralized processor.

Evaluate the mutual-information term in (28) as follows:

I (X(L);Y(Sc))
= h (Y(Sc))−

∑
i∈Sc

h(Zi)

≤
∑
i∈Sc

(h(Yi)− h(Zi))

(a)

≤
∑
i∈Sc

1

2
log(1 + SNRi + INRi+1,i)

(b)

≤

{ ∑
i∈Sc

1
2 log(1 + SNRi) + |Sc|

2 , if L ∈ S∑
i∈Sc

1
2 log(1 + SNRi) + |Sc|−1

2 , if L ∈ Sc
(29)

where (a) holds because Gaussian distribution maximizes the
entropy h(Yi) and (b) is due to the fact that INRi+1,i ≤ SNRi
thus 1

2 log(1+SNRi+INRi+1,i) ≤ 1
2 log(1+SNRi)+ 1

2 for i =
1, · · · , L− 1. For i = L, h(YL)−h(ZL) = 1

2 log(1 +SNRL).
Now, we are going to choose a particular cut to further upper

bound the cut-set bound. We compare 1
2 log(SNRi) at each

base-station with the backhaul capacity Ci, and let the cut go
through either the user-base-station link or the backhaul link,
whichever corresponds to the smaller of the two quantities
above, as shown in Fig. 5. More precisely, define

S =

{
i

∣∣∣∣12 log SNRi ≥ Ci
}
. (30)

With this particular cut, we can now bound the difference
between the cut-set bound and the achievable sum rate. First,
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Fig. 5. Choice of cut-set for the Wyner model. The cut goes through the
access link or the backhaul link depending on whether 1

2
log(SNRi) is greater

or smaller than Ci.

consider the case that L ∈ Sc, we use the achievable sum rate
as given in (26):

Rcut−set
sum −Rsum

≤
∑
i∈Sc

{
1

2
log(1 + SNRi)−

1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)}
+
∑
i∈S

{
Ci −

1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)}
+
|Sc| − 1

2

=
∑
i∈Sc

1

2
log
(
1 + 2−2CiSNRi

)
+
∑
i∈S

1

2
log

(
22Ci + SNRi

1 + SNRi

)
+
|Sc| − 1

2

(a)

≤ |Sc|
2

+
|S|
2

+
|Sc| − 1

2

≤ L− 1

2
(31)

where in (a) we used the definition of the cut (30), i.e., SNRi ≤
22Ci for i ∈ Sc, and SNRi ≥ 22Ci for i ∈ S, and the last
inequality is due to the fact that |Sc|+ |S| = L and |Sc| ≤ L.

Now, consider the case that L ∈ S. We tighten the sum rate
expression (26) by noticing that since by the definition of S
we have 1

2 log SNRL ≥ CL, so by (27) we have RL = CL. In
this case,

Rcut−set
sum −Rsum

≤
∑
i∈Sc

{
1

2
log(1 + SNRi)−

1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)}
+

∑
i∈S\{L}

{
Ci −

1

2
log

(
1 + SNRi

1 + 2−2CiSNRi

)}
+
|Sc|

2

≤ |Sc|
2

+
|S| − 1

2
+
|Sc|

2
≤ L− 1

2
(32)

This completes the proof.

It turns out that even without Wyner-Ziv compress-and-
forward, it is still possible to achieve the sum capacity to
within a constant, albeit larger, gap under the same weak-
interference condition.

Theorem 4. For a multicell processing Wyner model shown
in Fig. 4, in the weak-interference regime of INRi+1,i ≤
SNRi, i = 1, 2, · · · , L − 1, the per-base-station SIC scheme
without Wyner-Ziv coding achieves a sum rate that is within
1
2 (1 + log(3))L− 1

2 bits of the sum capacity.

Proof: Applying Theorem 2 to the Wyner model of Fig. 4
with the decoding order from user L to user 1, it is easy to
see that the achievable rate of user L remains the same while
the rates of other users become

Ri =
1

2
log

1 + 2−2Ci INRi+1,i + SNRi
1 + 2−2Ci INRi+1,i + 2−2CiSNRi

. (33)

Under the weak-interference condition INRi+1,i ≤ SNRi,
when i ∈ Sc, we have 0 ≤ 2−2Ci INRi+1,i ≤ 1, and when
when i ∈ S, we have 0 ≤ 2−2Ci INRi+1,i ≤ 2−2CiSNRi.
Replace the Ri expressions in (31) and (32) by (33) while
noting the inequalities above, we obtain the 1

2 (1+log(3))L− 1
2

bound.
Note that a looser bound can be obtained by noting that

under the weak-interference condition INRi+1,i ≤ SNRi, the
achievable rate without Wyner-Ziv coding (33) is already
within 1

2 bits of the rate with Wyner-Ziv coding as in (25). As
a result, a looser sum-rate gap to the cut-set upper bound can
immediately be obtained as L− 1

2 + L−1
2 = 3

2L− 1 bits2.

V. OPTIMAL RATE ALLOCATION WITH A TOTAL
BACKHAUL CAPACITY CONSTRAINT

A practical system may have a constraint on the sum
capacity of all digital backhaul links, for example, when the
backhaul links are implemented in a wireless medium with
shared bandwidth. So, it may be of interest to optimize the
allocation of backhaul capabilities among the base-stations in
order to achieve an overall maximum sum rate under a total
backhaul capacity constraint. The structure of the solution
of such an optimization can also yield useful insight. The
optimization problem can be formulated as the following:

maximize

L∑
k=1

Rk (34)

subject to Ck ≥ 0, k = 1, 2, · · · , L
L∑
k=1

Ck ≤ C

where Rk, k = 1, 2, · · · , L are functions of Ck as derived
in Theorem 3, and C > 0 is the total available backhaul
capacity. The following theorem provides an optimal solution
to the above optimization problem for the per-base-station SIC
scheme with Wyner-Ziv coding.

Theorem 5. For the uplink multicell joint processing model
shown in Fig. 1, with the per-base-station SIC at the central
processor with Wyner-Ziv coding, the optimal allocation of
backhaul link capacities subject to a total backhaul capacity
constraint C is given by

C∗k = max

{
1

2
log(SINRk)− α, 0

}
, (35)

2The authors wish to thank Yuhan Zhou to point out the tighter bound in
Theorem 4.
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where α is chosen such that
∑L
k=1 C

∗
k = C.

Proof: Substituting the rate expression (19) for Rk into
the optimization problem (34), we obtain the following equiv-
alent minimization problem:

minimize

L∑
k=1

1

2
log
(
1 + 2−2CkSINRk

)
(36)

subject to Ck ≥ 0, k = 1, 2, · · · , L.
L∑
k=1

Ck ≤ C

It can be easily seen that (36) is a convex optimization
problem, as the constraints are linear and the objective function
is the sum of convex functions, as can be verified by taking
their second derivatives.

Now introducing Lagrange multipliers ν ∈ RL+ for the
positivity constraints Ck ≥ 0, k = 1, 2, · · · , L, and λ ∈ R+

for the backhaul sum-capacity constraint
∑L
k=1 Ck ≤ C, we

form the Lagrangian

L(Ck,ν, λ) =

L∑
k=1

1

2
log
(
1 + 2−2CkSINRk

)
−

L∑
k=1

νkCk + λ

(
L∑
k=1

Ck − C

)
(37)

Taking the derivative of the above with respect to Ck, we
obtain the following Karush-Kuhn-Tucker (KKT) condition

− 2−2C
∗
kSINRk

1 + 2−2C
∗
kSINRk

− νk + λ = 0, (38)

for the optimal C∗k , where k = 1, 2, · · · , L. Note that νk = 0
whenever Ck > 0. Now, the optimal C∗k must satisfy the back-
haul sum-capacity constraint

∑L
k=1 C

∗
k ≤ C with equality,

because the objective of the minimization Rk monotonically
increases with Ck. Solving the condition (38) together with
the fact that

∑L
k=1 C

∗
k = C gives the following optimal C∗k :

C∗k = max

{
1

2
log

SINRk
β

, 0

}
, (39)

where β is chosen such that
∑L
k=1 C

∗
k = C. This is equivalent

to (35).
An interpretation of (39) is that whenever the SINR of user

k is above a threshold β, 1
2 log SINRk

β bits of the backhaul
link should be allocated to user k. Otherwise, this user should
not be active as far as maximizing the uplink sum rate is
concerned. This optimal rate allocation is quite similar to the
classic water-filling solution for the sum-capacity maximiza-
tion problem for a parallel set of Gaussian channels, in which
more power (backhaul capacity in this case) is assigned to
users with a better channel.

When written as (35), the optimal backhaul capacity allo-
cation can be interpreted as follows: Ck = 1

2 log(SINRk) can
be thought of as the nominal optimal backhaul link capacity.
If the total backhaul capacity is above (or below) the nominal∑
k

1
2 log(SINRk), then the extra capacity must be distributed

(or taken away) from each base-station equally. In other words,

all base-station should nominally operate at the point 1/2 bits
away from the SIC limit (as shown in Fig. 3). If more (or
less) backhaul capacity is available than the nominal value,
all base-stations should move above (or below) that operating
point in the same manner.

Finally, we remark that the decoding order at the centralized
processor plays an important role in the optimal rate allocation.
Different decoding orders result in different rate expressions
in Theorem 1 and thus different rate allocations in Theorem 5,
and as a consequence different achievable sum rates. In order
to determine the decoding order that results in the largest sum
rate (or the maximum network utility), we need to exhaustively
search over K! different decoding orders. This is a nontrivial
problem that is also encountered in other contexts involving
successive decoding such as in V-BLAST [26].

VI. NUMERICAL EXAMPLES

A. Two-User Symmetric Scenario

To obtain numerical insight on the per-base-station SIC-
based schemes proposed in this paper, the achievable rate
regions of Theorem 1 and Theorem 2 are compared with that
obtained by two other schemes: 1) single-user decoding with-
out joint processing; 2) joint base-station processing as defined
in (21) in Section III-C, for a two-user symmetric scenario
where L = 2, P1 = P2 = N0 = 1, SNR = h211 = h222,
INR = h212 = h221, and C = C1 = C2. Under the symmetric
setting, both Theorem 1 and Theorem 2 give two symmetric
achievable rate pairs depending on the decoding order. Time-
sharing of the two achievable rate pairs gives a pentagon
shaped achievable rate region.

Single-user decoding without joint processing is considered
as a baseline, in which each receiver decodes its own signal
while treating the other user’s signal as noise. This gives the
following achievable rate pair

R1 = R2 = min

{
1

2
log

(
1 +

SNR

1 + INR

)
, C

}
(40)

which in the symmetric setting results in a square shaped
achievable rate region with (R1, R2) as the top-right corner.

We also compare with the joint-base-station processing SIC
scheme of (21). We restrict ourselves to symmetric quantiza-
tion noise levels here. The quantization noise level q is chosen
such that the resulting average backhaul link capacity is C, i.e.,

I(Y1; Ŷ1) + I(Y2; Ŷ1|Ŷ1) = 2C. (41)

This condition gives the following analytic expression for the
quantization noise level:

q =
a+

√
4b+ 24C (a2 − 4b)

24C − 1
, (42)

where a = 1 + SNR + INR, and b = SNR · INR. Plots of the
joint-base-station SIC are then obtained using (21) with this
quantization noise level.

The achievable rate regions obtained above are compared
for the following channel settings:
• SNR = 30dB, INR = 20dB, C = 5 bits;
• SNR = 30dB, INR = 5dB, C = 5 bits;
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Fig. 6. Comparison of the proposed achievability scheme and another two schemes

• SNR = 30dB, INR = 20dB, C = 10 bits;
• SNR = 30dB, INR = 20dB, C = 2 bits.

Fig. 6(a) shows that at relatively strong interference level
INR = 20dB, the proposed per-base-station SIC schemes
(both with and without Wyner-Ziv compression) expand the
baseline achievable rate region by about 2.8 bits on either of
the individual rates and on the sum rate. The joint base-station
SIC regions further outperforms the proposed scheme in sum
rate by about 2.5 bits due to the benefits of joint decoding.

However, when the interfering links are weak, as shown
in Fig. 6(b) where INR = 5dB, all four achievable rate
regions are close to each other. This is the regime where
treating interference as noise is close to optimal, so multicell
processing does not provide significant benefits.

In the above two examples, the capacities of the backhaul
links are already quite abundant, since they are set to be the
rate supported by the direct links: 1

2 log(1 + SNR) ≈ 5 bits.
In Fig. 6(c), we further increase the backhaul capacity to 10
bits, and show that doing so does not significantly improve the
achievable rate region for either proposed SIC-based schemes

or the joint base-station processing scheme.
Lastly, we decrease the backhaul capacity from 5 bits to

2 bits. Interestingly, this is a situation in which the base-
line scheme can outperform per-base-station SIC as shown
in Fig. 6(d). Therefore, the proposed per-base-station schemes
can be inefficient in term of sum rate, when the backhaul
rates are very limited. Observe that the largest sum rate is still
obtained with joint base-station processing.

B. Multicell OFDMA Network
To further understand the performance of the proposed per-

base-station SIC scheme in practical systems, in this section,
the achievable rates of the two variations of the per-base-
station SIC, i.e., with and without Wyner-Ziv coding, are
evaluated for a wireless cellular network setup with 19 cells, 3
sectors per cell, and 10 users per sector, where an orthogonal
frequency-division multiple-access (OFDMA) scheme with 64
tones over a fixed 10Mbps bandwidth is employed. The cellu-
lar topology is shown in Fig. 7. A 19-cell wrap-around layout
is used to ensure uniform interference statistics throughout the
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TABLE I
WIRELESS CELLULAR MODEL PARAMETERS

Cellular Layout Hexagonal, 19 cells, 3 sectors/cell
BS-to-BS Distance 600 m
Frequency Reuse 1

Number of User per Sector 10
Channel Bandwidth 10 MHz
MS Transmit PSD −27 dBm/Hz

Antenna Gain 15 dBi
Background Noise −169 dBm/Hz

Noise Figure 7 dB
Multipath Time Delay Profile ITU-R M.1225 PedA
Distance-dependent Path Loss 128.1 + 37.6 log10(d)

Number of Tones 64

network. The assignments of frequency tones to users within
each cell are non-overlapping. As a result, users experience
only intercell interference and no intracell interference. Both
the base-stations and the mobile users are equipped with a
single antenna each. Each of the 19 base-stations is connected
to the centralized processor via a rate-limited backhaul link.
Perfect channel estimation is assumed, and the CSI is made
available to all base-stations and to the centralized processor.
In the simulation, uniform power allocation of −27dBm/Hz
is assumed at all the mobile users. For convenience, a round-
robin scheduler is used for user assignment. The base-station-
to-base-station distance is set to 600m corresponding to a
typical urban deployment. Detailed system parameters are
outlined in Table I.

In the first part of the simulation, the capacities of the
backhaul links are fixed per base-station and uniformly dis-
tributed across the frequency tones, e.g., if the capacity of
a backhaul link is 64Mbps, each frequency tone is assumed
to have a backhaul of 64Mbps/64 = 1Mbps. Cumulative
distribution function (CDF) of the user rates is plotted in order
to visualize the performance gain of the proposed schemes
over a baseline system, in which base-stations decode the user
messages without joint processing at the centralized processor.
For the proposed per-base-station SIC scheme, to account for
the fairness among users, the decoding order across the cells
is chosen to be in decreasing order of the user SINRs (prior to
SIC). This decoding order is adopted on each of the OFDM
tones independently.

Fig. 8 shows the CDF plots of user rates with a backhaul
capacity at each base-station of 180Mbps (i.e., 60Mbps per
sector). It is seen that the two per-base-station SIC schemes
(with or without Wyner-Ziv coding) both significantly outper-
form the baseline system. The user rate at 50th-percentile is
around 0.8Mbps for the baseline, 2.1Mbps for the per-base-
station SIC scheme without Wyner-Ziv coding, and 2.8Mbps
for the per-base-station SIC scheme with Wyner-Ziv coding.
Compared with the baseline curve, the per-base-station SIC
curves also have a better distribution of user rates in terms of
fairness. There is a noticeable performance gap between the
SIC curve with Wyner-Ziv compression and without Wyner-
Ziv-compression. This gap is due to the compression gain
brought by side information.

When the capacity of the backhaul per base-station increases
to 270Mbps, the proposed per-base-station SIC schemes pro-
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Fig. 7. A cellular topology with 19 cells, 3 sectors per cell, and 10 users per
sector placed randomly. The distance between the neighboring base-stations
is set to 600m.

duce a further performance gain as compared to the 180Mbps
case. As can be seen in Fig. 9, the 50-percentile rate becomes
2.6Mbps for the per-base-station SIC scheme without Wyner-
Ziv compression, and 3.05Mbps for the per-base-station SIC
scheme with Wyner-Ziv compression. However, the gap be-
tween the two curves becomes smaller. As the capacity of
the backhaul per base-station further increases to 360Mbps,
Fig. 10 shows that the per-base-station SIC schemes now only
perform marginally better than the 270Mbps case. This is when
the benefit of multicell SIC starts to saturate.

Further, as shown in Fig. 10, the CDF curves for the SIC
schemes with and without Wyner-Ziv compression are very
close to each other for the 360Mbps backhaul case. Thus,
the benefit of performing Wyner-Ziv compress-and-forward
relaying at the base-stations becomes negligible when the
capacities of backhaul links are high, thus confirming our
earlier theoretical analysis.

In order to quantitatively evaluate the performance gain
brought by the centralized processor, Table II shows the
average per-cell sum rate obtained by different schemes.
The baseline scheme gives an average per-cell sum rate of
55.5Mbps. By utilizing a high-capacity backhaul with Wyner-
Ziv compression, up to 94% sum rate improvement can be
obtained. Note that although the rate improvement without
Wyner-Ziv is lower than that with Wyner-Ziv, considerable
performance gains in the range of 37% to 84% can still be
obtained without Wyner-Ziv coding. As noted before, the gain
due to the backhaul saturates at around 270Mbps.

The above simulation is performed assuming that the
backhaul capacity is the same for each base-station and is
uniformly allocated across the frequencies. It is possible to
further optimize the backhaul capacity allocation using (35)
of Theorem 5. In the next set of simulations, we choose α
in (35) to satisfy an average backhaul constraint across the
cells, and present the resulting performance with optimized
backhaul allocation in Table II and Fig. 11. It can be seen that
120−150Mbps optimized backhaul already achieves about the
same performance as that of 180Mbps uniform backhaul. Like-
wise, 180Mbps optimized backhaul already achieves about
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Baseline: No Centralized Processor

Per−BS SIC W/ Wyner−Ziv Compression
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Fig. 8. CDF of user rates with 180Mbps backhaul per base-station uniformly
allocated across the frequencies
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Baseline: No Centralized Processor

Per−BS SIC W/ Wyner−Ziv Compression
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Fig. 9. CDF of user rates with 270Mbps backhaul per base-station uniformly
allocated across the frequencies

the same performance as that of 270Mbps uniform backhaul.
Thus, the optimization of the backhaul is quite beneficial.

Further, it can be seen from Fig. 11 that under infinite
backhaul, the achieved per-cell sum rate is about 110Mbps
for this cellular setting. But when optimized, a finite backhaul
capacity at about 1.5 times of the user sum rate (i.e., at about
150Mbps) is already sufficient to achieve about 100Mbps user
sum rate, which is 90% of the full benefit of uplink network
MIMO. Note that the gain in per-cell sum rate due to the
optimization of the backhaul becomes smaller as the backhaul
capacity increases, due to the fact that increasing the backhaul
capacity eventually offers diminishing return.

Finally, we mention that the performance gain presented
here is idealistic because the achievable rates are computed us-
ing information theoretical expressions assuming ideal coding,
modulation, and perfect CSI. In addition, all users in the 19-
cell cluster are assumed to participate in cooperative multicell
processing, and no out-of-cluster interference is accounted for.
The results in this paper nevertheless serve as upper bound to
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Baseline: No Centralized Processor
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Fig. 10. CDF of user rates with 360Mbps backhaul per base-station uniformly
allocated across the frequencies
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Fig. 11. Per-cell sum rate vs. average per-cell backhaul capacity using per-
base-station SIC with uniform and optimized backhaul capacity allocation

what is achievable in an uplink network MIMO system.

VII. CONCLUSION

This paper presents an information-theoretical study of
a novel uplink multicell processing scheme employing the
compress-and-forward technique with the per-base-station SIC
receiver structure for the uplink of a network MIMO system,
in which the base-stations are connected to a centralized
processor with finite capacity backhaul links. The main ad-
vantage of the proposed schemes is that it achieves significant
performance gain over the conventional scenario where no
centralized processor is deployed, while having an achievable
rate region which is easily computable, and that it leads to an
architecture that is more amendable to practical implementa-
tions than the joint decoding scheme. Furthermore, theoretical
analysis shows that the proposed per-base-station SIC scheme
is within a constant gap to the sum capacity for a class of
Wyner channel models.

The results of this paper also show that when employing the
proposed per-base-station SIC scheme, the capacities of the
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TABLE II
IMPROVEMENT IN PER-CELL SUM RATE OVER 19 CELLS, 3 SECTORS PER CELL, 10 USERS PER SECTOR. CELL DIAMETER IS 600M. BASELINE PER-CELL

SUM RATE IS 55.5MBPS

Per-cell Average Backhaul Capacity Per-base-station SIC Improvement Per-base-station SIC Improvement
Backhaul (Mbps) Allocation without WZ (Mbps) over Baseline (%) with WZ (Mbps) over Baseline (%)

180 uniform 75.3 37% 92.7 67%
270 uniform 93.2 68% 104.2 88%
360 uniform 102.3 84% 107.6 94%
120 optimized 75.1 35% 89.1 60%
180 optimized 83.3 50% 102.9 85%

backhaul links should scale with the logarithm of the SINR at
each base-station, both from a point of view of approaching
the theoretical maximum SIC rate with unlimited backhaul, as
well as for maximizing the overall sum rate subject to a total
backhaul rate constraint. Numerical simulations reveal that
significant sum-rate gain can be obtained by the proposed SIC-
based schemes with modest backhaul capacity requirement.
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