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Abstract. The sum capacity of the Gaussian vector broadcast channel is the
saddle point of a Gaussian mutual information game in which the transmitter
maximizes the mutual information by choosing the best transmit covariance
matrix subject to a power constraint, and the receiver minimizes the mutual
information by choosing a least-favorable noise covariance matrix subject to a
diagonal constraint. This result has been established using a decision-feedback
equalization approach under the assumption that the least-favorable noise co-
variance matrix is non-singular. This paper generalizes the above result to
the case where the least-favorable noise is singular. In particular, it is shown
that the least-favorable noise is not unique, and different least-favorable noise
covariance matrices are related to each other by a linear estimation relation.

1. Introduction

A communication model with a single transmitter sending independent infor-
mation to multiple receivers at the same time is referred to as a broadcast channel.
Although the capacity region of a general broadcast channel is still an unsolved
problem, recent progress has been made in the special case of the sum capacity of
Gaussian vector broadcast channels [1] [2] [3] [4]. A Gaussian vector broadcast
channel with K receivers can be modeled as follows:

(1.1) Yi = HiX + Zi, i = 1, · · · , K

where X is a vector-valued transmit signal, Yi is the vector-valued receive signal,
Hi is the channel matrix, and Zi is the additive Gaussian vector noise at receiver
i. The solution to the Gaussian vector broadcast channel sum capacity problem
is based on two key ideas. First, an achievability result can be obtained using
a precoding technique that effectively pre-subtracts multi-user interference at the
transmitter. The precoding technique is known as “writing-on-dirty-paper” [5].
Second, a converse theorem can be obtained using the idea that the broadcast
channel capacity is bounded by a cooperative bound with a least-favorable noise.
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The least-favorable-noise converse is based on the following: the sum capacity
of the broadcast channel is clearly bounded by the capacity of the vector chan-
nel with cooperative receivers: max I(X;Y1 · · ·YK). Further, Sato [6] observed
that the sum capacity of a broadcast channel depends only on the marginal dis-
tribution of the noises and not on their correlation. This is because receivers of
a broadcast channel cannot cooperate. So, they are ignorant of the actual noise
correlation. Therefore, the sum capacity of a broadcast channel must be bounded
by the minimum mutual information

(1.2) min
Szz

max
Sxx

I(X;Y1 · · ·YK),

minimized over all possible joint distributions of the noises. For a Gaussian vector
broadcast channel with a convex input constraint, restricting the above minimax
problem to joint Gaussian input and noise distributions is without loss of generality.
Further, it can be shown that this upper bound is tight.

The achievability of the minimax mutual information expression can be estab-
lished using several different methods. In [2], it is shown that if a decision-feedback
equalizer is used as a joint receiver in the broadcast channel, the least-favorable
noise would induce a feedforward matrix that is diagonal. In addition, the feed-
back section can be moved to the transmitter as a precoder. Thus, with a least-
favorable noise, no receiver cooperation in a decision-feedback equalizer is necessary
and min I(X;Y1 · · ·YK) is achievable. The above minimum can be further max-
imized over all possible input distributions. Since min-max is equal to max-min
in a convex-concave function, this implies that (1.2) is indeed the sum capacity of
a Gaussian vector broadcast channel. However, the proof in [2] appears to apply
only to least-favorable noise covariances that are non-singular.

In [3] and [4], a completely different approach is taken. Focusing on sum power
constrained channels, [4] showed that the precoding region for a Gaussian vector
broadcast channel is precisely a “dual” multiple access channel with the transmitter
and receivers interchanged. Based on this duality, [4] showed that the minimization
for the least-favorable noise and the maximization for the dual multiple access
channel sum capacity have the same solution. In addition, [4] gives an explicit
solution for the least-favorable noise. The derivation in [4] is most transparent if
the least-favorable noise is non-singular. To circumvent the singular noise issue, [4]
used a sequence of non-singular noise covariance to approximate the singular noise,
thus proving the result in full generality. Strictly speaking, however, this solution
is not constructive when the least-favorable noise is singular.

The singular noise issue is circumvented in [3] using a different technique. Al-
though also based on duality, the treatment in [3] involves a transformation of the
noise covariance matrix for the broadcast channel to an input cost constraint for
the multiple access channel. This approach resolves the singularity issue, but it
does not characterize the entire class of least-favorable noise.

It should be noted that the duality approach [3] [4] applies only to Gaussian
vector broadcast channels with a power constraint. The decision-feedback equaliza-
tion approach [2], on the other hand, applies to Gaussian vector broadcast channels
with arbitrary convex constraints, and is therefore more general. However, neither
approach has explicitly dealt with the issue of singular least-favorable noise so far.

Singular least-favorable noise is not necessarily an unlikely event. In fact, the
least-favorable noise is almost always singular in a broadcast channel where the
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number of receive dimensions is larger than the number of transmit dimensions.
The main purpose of this paper is to give a complete characterization of the least-
favorable noise for an arbitrary channel. A combination of the decision-feedback
equalization approach and the duality approach is taken. The main results are,
first, the decision-feedback equalizer approach can be generalized to the case of
singular least-favorable noise. Second, least-favorable noises are not unique, and
they can be characterized via a duality between the broadcast channel and the
multiple access channel.

2. Decision-Feedback Equalization with Singular Noise

Without loss of generality, consider a Gaussian vector broadcast channel with
two receivers Y = HX + Z, where HT = [HT

1 HT
2 ], YT = [YT

1 YT
2 ] and ZT =

[ZT
1ZT

2 ]. The objective of this section is to show that

(2.1) min
Szz

1
2

log
|HSxxHT + Szz |

|Szz|
is achievable even if the minimizing Szz is singular. Recall that the minimization
is over all Szz with fixed block diagonal terms. The fixed block diagonals can be
assumed to be identity matrices with no loss of generality. This is a generalization
of the earlier result in [2] where the case for non-singular Szz is solved. The earlier
result showed that if Szz satisfies the Karush-Kuhn-Tucker (KKT) condition for
the minimization problem

(2.2) S−1
zz − (HSxxHT + Szz)−1 =

[
Ψ1 0
0 Ψ2

]
,

then there exists a decision-feedback equalizer (DFE) with a diagonal feedforward
matrix. When the channel matrix H is full rank, the minimizing noise covariance
matrix is always non-singular. However, this is not the case when H has more
rows than columns. This situation corresponds to the case where there are more
receiver antennas than transmit antennas in the broadcast channel. To extend the
achievability result to accommodate singular least-favorable noises, both the KKT
condition and the design of the DFE need to be generalized.

The decision-feedback equalizer that is required to accommodate singular noise
differs from the conventional structure in one crucial aspect. A conventional DFE
never processes more output dimensions than input dimensions. For example, in a
channel with two transmit antennas and three receive antennas, a conventional DFE
always reduces the two-by-three channel to a two-by-two channel by receiver joint
processing. However, in a broadcast channel, receivers cannot cooperate and joint
processing is not possible. Thus, a non-trivial generalization of the conventional
DFE structure is required.

Without loss of generality, Sxx is assumed to be fixed and full-rank. Let Sxx =
V ΣV T be an eigenvalue decomposition. It is convenient to set H ′ = HV

√
ΣM to

be the effective channel, and let the input covariance matrix be simply an identity
matrix. The choice of M will be made later.

Suppose that Szz is a low-rank solution to the minimization problem (2.1).
Decompose Szz in the following form:

(2.3) Szz =
[

U1 U2

] [
Sz̃z̃ 0
0 0

] [
UT

1

UT
2

]
,
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where Sz̃z̃ is invertible and [ U1 U2 ] is an orthonormal matrix. The null space of
Szz must be a subspace of the null space of the channel, (because otherwise the
capacity would be infinity). Thus, it must be possible to express the channel matrix
H ′ as:

(2.4) H ′ = U1H̃.

The minimization problem now becomes

min
Sz̃z̃

1
2

log
|H̃H̃T + Sz̃z̃|

|Sz̃z̃|
(2.5)

s.t. U1Sz̃z̃U
T
1 has identities on the diagonal.

A necessary condition for the least-favorable noise is

(2.6) S−1
z̃z̃ − (H̃H̃T + Sz̃z̃)−1 = UT

1

[
Ψ1 0
0 Ψ2

]
U1.

The objective of this section is to show that if the noise covariance matrix satisfies
the above condition, then there exists a decision-feedback equalizer whose feedfor-
ward matrix is diagonal. The development of decision-feedback equalizer follows
that of [2]. The difference between the new proof and the original treatment is
highlighted here.

The derivation of the decision-feedback equalizer is based on minimum mean-
square error (MMSE) estimation. The key observation is that MMSE estimator is
not unique when both the channel and the noise are rank deficient. Consider the
MMSE estimation of X given Y = HX + Z. The MMSE estimation is a matrix
multiplication X̂ = WY, where W satisfies a normal equation:

(2.7) WSyy = Sxy.

Because both Szz and H are low rank, Syy is also low rank. It is not difficult to
verify that

(2.8) W = H̃T (H̃H̃T + Sz̃z̃)−1UT
1 + SUT

2

satisfies the normal equation for any choice of S. A different DFE can be designed
for each choice of S. The rest of the section is devoted to showing that there exists
a choice of S (along with a choice of M) that makes the DFE feedforward matrix
diagonal.

The first step in the design of a decision-feedback equalizer is noise whitening.
Define

(2.9) Ĥ = S
− 1

2
z̃z̃ H̃.

The MMSE estimator matrix W can be re-written as

(2.10) W = SxxĤT (ĤĤT + I)−1S
− 1

2
z̃z̃ UT

1 + SUT
2

The structure of the feedforward matrix involves a Cholesky factorization of Rb =
E[(X− X̂)(X− X̂)T ]. It turns out that Rb is independent of the choice of S. Using
the matrix inversion lemma, it can be shown that

(2.11) Rb = (ĤT Ĥ + I)−1.

Further, W can be re-written as follows:

(2.12) W = (ĤT Ĥ + I)−1ĤT S
− 1

2
z̃z̃ UT

1 + SUT
2 .
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In a decision-feedback equalizer, half of the Cholesky factorization Rb = G−1∆−1G−T

is placed in the feedback section, and the remaining half is placed in the feedforward
section. Thus, the feedforward matrix has the form:

(2.13) F = ∆−1G−T ĤT S
− 1

2
z̃z̃ UT

1 + S′UT
2 .

The goal of this section is to use the generalized least-favorable noise condition
(2.6) to show that F can be made diagonal. Using the matrix inversion lemma,

UT
1

[
Ψ1 0
0 Ψ2

]
U1 = S−1

z̃z̃ − (H̃H̃T + Sz̃z̃)−1(2.14)

= Ĥ(I + ĤĤT )−1ĤT .

With some algebra (see [2] for details), it is possible to prove that, by an appropriate
choice of M , the Cholesky factorization of Rb can be made to give:

(2.15) ∆− 1
2 G−T ĤT S

− 1
2

z̃z̃ =
[ √

Ψ1 0
0

√
Ψ2

]
.

Therefore, by choosing

(2.16) S′ = ∆− 1
2

[ √
Ψ1 0
0

√
Ψ2

]
U2,

the feedforward matrix becomes

(2.17) F = ∆− 1
2

[ √
Ψ1 0
0

√
Ψ2

]
(U1U

T
1 + U2U

T
2 ),

which is diagonal since

(2.18) U1U
T
1 + U2U

T
2 = [ U1 U1 ]

[
UT

1

UT
2

]
= I.

To summarize, when the least-favorable noise is singular, it must satisfy a
modified KKT condition (2.2). The decision-feedback equalizer structure with the
singular noise is not unique. However, among the class of decision-feedback equal-
izers, there exists one whose feedforward matrix is diagonal. This is true for any
fixed Sxx. Thus, in a Gaussian vector broadcast channel, the minimum mutual
information I(X;Y1,Y2) is an achievable sum rate, even when the least favorable
noise covariance matrix is singular.

3. The Structure of Least-Favorable Noise

3.1. Uplink-Downlink Duality. The previous section shows that whenever
the noise covariance matrix satisfies the least-favorable noise condition, (2.2) or
(2.6), the mutual information I(X;Y) is achievable in a broadcast channel even
without receiver cooperation. However, it does not give an explicit method to
compute the least-favorable noise. Neither (2.2) nor (2.6) appears to have a closed-
form solution. Further, although I(X;Y) is a convex function of Szz, the numerical
computation of the least-favorable noise is not necessarily easy, especially when the
minimizing noise covariance matrix is singular. Fortunately, there is one important
special case for which the computation is easy. This is when the transmit covariance
Sxx is being maximized at the same time.

Consider a Gaussian vector broadcast channel with a power constraint tr(Sxx) ≤
P . Sato’s outer bound states that the sum capacity is less than min max I(X;Y),
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where the maximization is over the power constraint and the minimization is over
all possible noise correlations. The achievability result in the previous section states
that a sum rate of max min I(X;Y) is achievable. Since the mutual information
is concave in Sxx and convex in Szz, the minimization and maximization opera-
tions can be interchanged. Thus, the sum capacity of a Gaussian vector broadcast
channel is precisely

(3.1) C = max
Sxx

min
Szz

1
2

log
|HSxxHT + Szz|

|Szz |
,

where tr(Sxx) ≤ P and Szz has fixed diagonal terms. Surprisingly, this minimax
problem has a special structure that gives it a particularly simple solution. The
new ingredient is the uplink-downlink duality1.

Uplink-downlink duality refers to the observation that the achievable rate region
of a broadcast channel using “writing-on-dirty-paper” precoding is the same as the
capacity region of a “dual” multiple access channel with the roles of the input and
output terminals interchanged and with a sum power constraint across all input
terminals. This duality was established in [4] and [3]. In this section, a different
derivation of duality is given. The main purpose is to illustrate that the minimax
problem can be solved efficiently via duality.

To simplify matters, let’s first assume that H is square and invertible, and also
that the maximizing Sxx and the least-favorable Szz are both full rank. Further, as-
sume that each receiver in the broadcast channel is equipped with a single-antenna.
The starting point of the new derivation is the KKT condition for the minimax
problem (3.1). Because the objective function in (3.1) is concave in Sxx and convex
in Szz , the KKT condition completely characterizes the saddle point. The KKT
condition is:

HT (HSxxHT + Szz)−1H = λI(3.2)
S−1

zz − (HSxxHT + Szz)−1 = Ψ(3.3)

where λ is the dual variable associated with the power constraint and Ψ is a diag-
onal matrix of dual variables associated with the diagonal constraint on the noise
covariance matrix. Multiplying (3.3) by HT on the left and H on the right and
substituting in (3.2), we obtain

(3.4) HT S−1
zz H = HT ΨH + λI.

The above is equivalent to

(3.5) H(HT ΨH + λI)−1HT = Szz.

Observe that (3.5) is precisely the KKT condition for a multiple access channel
with diagonal matrix Ψ as the transmit covariance matrix and tr(ΨSzz) ≤ P as the
input constraint. Since Szz has 1’s on the diagonal, the constraint is equivalent to
a sum power constraint on Ψ. After a proper scaling of the power constraint, Ψ, λ
and Szz, it can be shown that (3.5) is precisely the KKT condition for the following

1Uplink-downlink duality can be generalized beyond the power constrained broadcast chan-
nels. Duality exists whenever the input constraint is a linear covariance constraint. See [7] for a
detailed discussion.
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optimization problem

max
D

1
2

log |HT DH + I |(3.6)

s.t. D is diagonal
trace(D) ≤ P,

D ≥ 0,

(where D = Ψ/λ.) Thus, there is a duality between a multiple access channel and
a broadcast channel. The solution to the minimax problem (3.1) can be obtained
from the solution to a maximization problem (3.6). Since (3.6) is much easier to
solve numerically (see e.g. [8] [9]), uplink-downlink duality gives an efficient way to
solve the minimax problem (3.1).

3.2. Least-Favorable Noise. The duality result suggests that the least fa-
vorable noise in the minimax problem can be computed via a multiple access chan-
nel. In particular, (3.5) gives an explicit formula for the covariance matrix of the
least-favorable noise. This formula has also appeared in both [3] and [4]. How-
ever, (3.5) is derived assuming that the channel matrix H is square and invertible
and both the least-favorable noise and the maximizing input covariance matrices
are full rank. In the general case, this is not necessarily true. In particular, the
maximizing input covariance matrix D of the dual multiple access channel may not
have non-zero entries everywhere on its diagonal. When the diagonals of D are all
non-zero, the KKT condition for the maximization problem (3.6) ensures that the
diagonal terms of H(HT ΨH +λI)−1HT are all 1’s. Otherwise, slack variables need
to be introduced and H(HT ΨH + λI)−1HT does not necessarily have 1’s on its
diagonal. Thus, it cannot be a valid choice of the least-favorable noise.

The purpose of the rest of the section is to show that a least-favorable noise
covariance can be obtained by adding a positive semi-definite matrix to H(HT ΨH+
λI)−1HT so that the sum of the two matrices has 1’s on the diagonal. Such a
positive semi-definite matrix is not unique, so the least-favorable noise covariance
matrix is not unique. In fact, in some cases, the class of least favorable noises can
be further enlarged by taking an additional step. Consider the candidate least-
favorable noise, re-labeled as S

(0)
zz :

(3.7) S(0)
zz = H(HT ΨH + λI)−1HT .

It is easy to see that the water-filling input covariance matrix Sxx with respect to
the channel H and the noise S

(0)
zz is:

(3.8) Sxx = (λI)−1 − (HT ΨH + λI)−1.

Now, Sxx may be rank deficient. In this case, the dimension of H must be reduced,
and the least-favorable noise must be re-computed using the reduced channel. The
re-computed noise covariance could have fewer 1’s on its diagonal, thus enlarging
the class of positive semi-definite matrices that can be added to its diagonal terms.
For the rest of the proof, it is assumed that this channel reduction step has already
taken place.

The proof is fairly lengthy. To simplify the algebra, the broadcast channel
considered here is assumed to have only a single antenna at each receiver. This
special case exhibits the essential features of the least-favorable noise.
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The first step of the proof is to verify that even though its diagonals may not
be 1’s, the candidate noise covariance matrix (3.7) satisfies the least-favorable noise
condition. Assuming that channel has already been reduced, Szz can be re-written
as

(3.9) S(0)
zz = U1Sz̃z̃U

T
1

where Sz̃z̃ is invertible and columns of U1 are orthonormal vectors. Further, H can
be re-written as

(3.10) H = U1H̃,

where H̃ is invertible. The strategy is to solve the minimax problem over Sz̃z̃ and
to show that the solution is S

(0)
zz = H(HT ΨH + λI)−1HT . The minimax problem

is now

max
Sxx

min
Sz̃z̃

1
2

log
|H̃SxxH̃T + Sz̃z̃ |

|Sz̃z̃|
(3.11)

s.t. tr(Sxx) ≤ P

U1Sz̃z̃U
T
1 has 1′s on diagonal

Sxx ≥ 0,

The KKT condition of the minimax problem is:

H̃T (H̃SxxH̃T + Sz̃z̃)−1H̃ = λI(3.12)

S−1
z̃z̃ − (H̃SxxH̃T + Sz̃z̃)−1 = UT

1 ΨU1(3.13)

Pre-multiplying the second equation above by H̃T and post-multiplying by H̃ , it is
not difficult to verify that

(3.14) H(HT ΨH + λI)−1HT = U1Sz̃z̃U
T
1 = S(0)

zz .

Thus, the candidate S
(0)
zz satisfies the least-favorable noise condition.

The rest of the proof is devoted to showing that the least-favorable noise con-
dition remains to be satisfied if a positive semi-definite matrix, denoted as S′

zz,
is added to S

(0)
zz to makes its diagonal terms 1. The proof is divided into several

parts. First, without loss of generality, the rows of H can be re-arranged so that
the upper-left sub-matrix of S

(0)
zz has 1’s on its diagonal. This implies that Ψ only

has positive entries on its upper-left diagonal, and S′
zz has non-zero entries only in

the lower-right corner:

(3.15) Ψ =
[

Ψ′ 0
0 0

]
, S′

zz =
[

0 0
0 S

]
.

Let n be the number of receivers in the broadcast channel. So, Ψ, Szz and S′
zz

are n × n matrices. Let the dimension of Ψ′ be k × k. So, the dimension of S is
(n − k) × (n − k). Also, let the rank of S

(0)
zz be r. Now, observe that k ≥ r. The

reason for this has to do with the channel reduction step mentioned before. Note
that from (3.8) the optimal Sxx can be expressed as:

Sxx = (λI)−1 − (HT ΨH + λI)−1(3.16)

= (λI)−1HT
√

Ψ(I +
√

ΨHHT
√

Ψ)−1
√

ΨH(λI)−1.

Thus, the rank of Sxx is the same as the rank of HT ΨH . The channel reduction
step guarantees that Sxx is full rank. This implies that HT ΨH must be full rank.
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For this to be true, Ψ must have non-zero diagonal entries in at least r′ positions,
where r′ is the rank of H . So, k ≥ r′. But, after the channel reduction, the rank of
H is the same as the rank of S

(0)
zz . This proves that k ≥ r.

In general, k can be strictly larger than r. Physically, this implies that in a
broadcast channel, the number of active receivers can be larger than the number
of transmit dimensions. Also note that since the rank of S

(0)
zz is r and the rank of

S′
zz is (n − k), the rank of S

(0)
zz + S′

zz is at most (n − k + r), which is not full rank
if k is strictly larger than r.

The next step in the proof involves the decomposition of S
(0)
zz + S′

zz along the
direction U1. The strategy is the following. First, find an n × (n − k) matrix of
orthonormal column vectors, denoted as U2, extending the space spanned by the
columns of U1, such that S′

zz can be expressed as:

(3.17) S′
zz =

[
0 0
0 S

]
=

[
U1 U2

] [
S11 S12

S21 S22

][
UT

1

UT
2

]
.

Recall that U1 contains r column vectors and U2 contains n − k column vectors.
So, [ U1 U2 ] contains n − k + r vectors, which do not necessarily span the whole
space. (Note that this U2 may be different from the U2 in section 2.)

Partition U1 and U2 into sub-matrices:

U1 =
[

uT
11

uT
12

]
U2 =

[
uT

21

uT
22

]
.(3.18)

Two useful facts about Sij and uij are derived next. First,

(3.19) S11 − S12S
−1
22 S21 = 0.

This is because

(3.20)
[

UT
1

UT
2

] [
U1 U2

]
= I,

so, from (3.17),

(3.21)
[

S11 S12

S21 S22

]
=

[
uT

11 uT
12

uT
21 uT

22

] [
0 0
0 S

][
u11 u21

u12 u22

]
.

This allows Sij to be solved explicitly:

S11 = uT
12Su12 S12 = uT

12Su22(3.22)

S21 = uT
22Su12 S22 = uT

22Su22.(3.23)

Therefore,

(3.24) S12S
−1
22 S21 = uT

12Su22(uT
22Su22)−1uT

22Su12 = S11,

thus proving (3.19).
The second useful fact is the following:

(3.25) u21 = u11u
T
12u

−T
22 .

The proof is based on (3.17)

(3.26)
[

0 0
0 S

]
=

[
u11 u21

u12 u22

][
S11 S12

S21 S22

][
uT

11 uT
12

uT
21 uT

22

]
.
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Multiply out the right-hand side. Using the fact that the upper-right sub-matrix
of the right-hand side is zero, we get

(3.27) 0 = u11S11u
T
12 + u21S21u

T
12 + u11S12u

T
22 + u21S22u

T
22.

Substituting in (3.22)–(3.23), the above is equal to

(3.28) 0 = (u11u
T
12 + u21u

T
22)S(u11u

T
11 + u22u

T
22).

Since S is full rank and (u11u
T
11 + u22u

T
22) is full rank, the above implies

(3.29) u11u
T
12 + u21u

T
22 = 0,

thus proving (3.25).
Finally, we are ready to show that S

(0)
zz + S′

zz satisfies the least-favorable noise
condition. Starting from (3.13)

(3.30) S−1
z̃z̃ − (H̃SxxH̃T + Sz̃z̃)−1 = UT

1 ΨU1,

the objective is to prove that
(3.31)[

Sz̃z̃ + S11 S12

S21 S22

]−1

−
[

H̃SxxH̃T + Sz̃z̃ + S11 S12

S21 S22

]−1

=
[

UT
1

UT
2

]
Ψ [ U1 U2 ].

The strategy is to simplify the above using Schur’s complement formula:

(3.32)
[

A B
C D

]−1

=
[

∆−1
D −∆−1

D BD−1

−D−1C∆−1
D D−1 + D−1C∆−1

D BD−1

]
,

where ∆D = A−BD−1C. To evaluate the matrix inversions in (3.31), ∆−1
D can be

simplified using (3.19):

(3.33) ∆D = Sz̃z̃ + S11 − S12S
−1
22 S21 = Sz̃z̃.

Thus, the first matrix inversion in (3.31) is equal to

(3.34)
[

S−1
z̃z̃ −S−1

z̃z̃ S12S
−1
22

−S−1
22 S21S

−1
z̃z̃ S−1

22 + S−1
22 S21S

−1
z̃z̃ S12S

−1
22

]
,

and the second matrix inversion in (3.31) can be expanded similarly:
(3.35)[

(H̃SxxH̃T + Sz̃z̃)−1 −(H̃SxxH̃T + Sz̃z̃)−1S12S
−1
22

−S−1
22 S21(H̃SxxH̃T + Sz̃z̃)−1 S−1

22 + S−1
22 S21(H̃SxxH̃T + Sz̃z̃)−1S12S

−1
22

]
.

Now, using (3.30), the difference between the two can now be simplified:

(3.36)
[

UT
1 ΨU1 −UT

1 ΨU1S12S
−1
22

−S−1
22 S21U

T
1 ΨU1 S−1

22 S21U
T
1 ΨU1S12S

−1
22

]
.

To prove (3.31), it remains to show that the above is equal to

(3.37)
[

UT
1

UT
2

]
Ψ

[
U1 U2

]
=

[
UT

1 ΨU1 UT
1 ΨU2

UT
2 ΨU1 UT

2 ΨU2

]
.

Comparing (3.36) with (3.37), it is clear that the two are equal if the following
holds:

(3.38) ΨU2 = −ΨU1S12S
−1
22 .
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Recall that Ψ has non-zero entries only in its upper-left diagonal. So, the left-hand
side of (3.38) is

(3.39) ΨU2 =
[

Ψ′ 0
0 0

] [
u21

u22

]
= Ψ′u21.

The right-hand side of (3.38) is

(3.40) −ΨU1S12S
−1
22 = −Ψ′u11u

T
12u

−T
22 .

By (3.25), the left-hand side is equal to the right-hand side. This establishes the
least-favorable noise condition (3.31).

3.3. Linear Estimation Interpretation. The previous section shows that
the least-favorable noise in a Gaussian minimax mutual information game is of
the type S

(0)
zz + S′

zz. Note that adding the term S′
zz does not change the mutual

information I(X;Y). This can be seen using the following argument. The value of
the minimax expression with (Sxx, S

(0)
zz ) is

(3.41) C =
1
2

log
|H̃SxxH̃T + Sz̃z̃|

|Sz̃z̃|
.

With (Sxx, S
(0)
zz + S′

zz), the capacity is

(3.42) C =
1
2

log

∣∣∣∣
H̃SxxH̃T + Sz̃z̃ + S11 S12

S21 S22

∣∣∣∣
∣∣∣∣

Sz̃z̃ + S11 S12

S21 S22

∣∣∣∣
.

Using the relation S11 − S12S
−1
22 S21 = 0 and the Schur’s complement formula for

the determinant

(3.43)
∣∣∣∣

A B
C D

∣∣∣∣ = |D| · |A − BD−1C|,

it is not difficult to show that

(3.44)
|S22| · |H̃SxxH̃T + Sz̃z̃ + S11 − S12S

−1
22 S21|

|S22| · |Sz̃z̃ + S11 − S12S
−1
22 S21|

=
|H̃SxxH̃T + Sz̃z̃|

|Sz̃z̃|
.

Therefore the capacity expressions (3.41) and (3.42) have the same value.
In some sense, S

(0)
zz is the “smallest” possible noise in the class of least-favorable

noises. This is because after the channel reduction step, HSxxHT is strictly positive
everywhere in the span of the U1 space. Thus, for capacity not to become infinity,
the noise covariance must also be strictly positive in the space spanned by U1. Now,
S

(0)
zz is the only noise covariance entirely in the U1 space that satisfies the KKT

condition. Thus, S
(0)
zz must be the “smallest” noise covariance that satisfies the

KKT condition.
S

(0)
zz is not, of course, the only such noise. The previous section shows that

(Sxx, S
(0)
zz + S′

zz) also satisfies the least-favorable noise condition. However, the
previous section did not explicitly prove that Sxx is the water-filling covariance
matrix for S

(0)
zz +S′

zz. But, because the addition of S′
zz can only reduce the minimax

capacity, the fact that it does not shows that Sxx must be the maximizing covariance
for S

(0)
zz + S′

zz. Thus, the entire class of (Sxx, S
(0)
zz + S′

zz) are saddle-points of the
minimax problem.
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The class of least-favorable noises S
(0)
zz + S′

zz has a linear estimation inter-
pretation. Let Z(0) and Z′ be independent Gaussian noise vectors with covari-
ance matrices S

(0)
zz and S′

zz respectively. Consider an orthogonal transformation
Z(0)

u = [U1U2]Z(0) and Z′
u = [U1U2]Z′. These two noise vectors take the form

(3.45) Z(0)
u =

[
z0
1

0

]
, Z′

u =
[

z′1
z′2

]
.

Consider two receivers, one has Z(0)
u as noise and the other has Z(0)

u + Z′
u as noise.

Clearly the second receiver cannot do better than the first one. However, the second
receiver does as well as the first receiver if the linear estimation of z0

1 + z′1 given
z′2 is exactly z′1. Since z0

1 and z′1 are independent, this condition is equivalent to
E[z′1|z′2] = 0. But, the covariance matrix of E[z′1|z′2] is S11 −S12S

−1
22 S21. Thus, the

covariance matrix of the additional noise S′
zz must satisfy the condition

(3.46) S11 − S12S
−1
22 S21 = 0.

The above argument shows that the entire class of least-favorable noises are related
to each other via a linear estimation relation2. As the previous section shows, this
relation is crucial in the derivation of the least-favorable condition.

4. Conclusions

This paper deals with the least-favorable noise in a Gaussian vector broadcast
channel. The least-favorable noise is not necessarily non-singular. The achievability
proof for the broadcast channel sum capacity is extended to the case of singular
least-favorable noises. The proof is based on the fact that the decision-feedback
equalizer is not unique when the noise is singular. Among all possible equalizers,
there exists one with a diagonal feedforward matrix.

In the second part of the paper, a new derivation for the duality between the
multiple access channel and the broadcast channel is given. The duality relation
gives a natural characterization of the entire class of least-favorable noises. The
least-favorable noise is not unique, and all least-favorable noises are related to each
other by a linear estimation relation.
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