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Gaussian Z-Interference Channel with a Relay Link:
Achievability Region and Asymptotic Sum Capacity
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Abstract— This paper studies a Gaussian Z-interference chan-
nel with a rate-limited digital relay link from one receiver to
another. Achievable rate regions are derived based on a combi-
nation of Han-Kobayashi common-private information splitting
technique and several different relay strategies including decode-
and-forward, quantize-and-forward, and a partial-interference-
forwarding strategy, in which the interference is decoded then
binned and forwarded through the digital link for interference
subtraction at the other end. For the Gaussian Z-interference
channel with a digital link from the interference-free receiver
to the interfered receiver, the capacity region is established
in the strong interference regime; an achievable rate region
is established in the weak interference regime. In addition, in
the weak interference regime, the partial-interference-forwarding
strategy is shown to be asymptotically sum-capacity achieving in
the high signal-to-noise ratio and high interference-to-noise ratio
limit. In this case, each relay bit asymptotically improves the sum
capacity by one bit. For the Gaussian Z-interference channel
with a digital link from the interference-free receiver to the
interfered receiver, the capacity region is established in the strong
interference regime; achievable rate regions are established in
the moderately strong and weak interference regime. In the
weak interference regime, the quantize-and-forward strategy is
shown to be asymptotically sum-capacity achieving in the limit
of large relay link rate. However, in this case, the sum capacity
improvement due to the digital link is shown to be bounded by
half a bit.

I. INTRODUCTION

The classic interference channel models a communication
situation in which two transmitters communicate with their
respective intended receivers while mutually interfering with
each other. The interference channel is of fundamental im-
portance for communication system design, because many
practical systems are designed to operate in the interference-
limited regime. The largest known achievability region for the
interference channel is due to Han and Kobayashi [1], where
a common-private information splitting technique is used to
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partially decode and subtract the interfering signal. The Han-
Kobayashi scheme has recently been shown to be capacity
achieving in a very weak interference regime [2], [3], [4] and
to be within one bit of the capacity region in general [5].

This paper considers a novel communication model in which
the classic interference channel is augmented by a noiseless
relay link between the two receivers. We are motivated to
study such a relay interference channel because in many
practical communication situations (e.g. a wireless cellular
system with remote users at the cell edge), the receivers
are often close to each other geographically and are capable
of establishing an independent communication link for the
purpose of interference mitigation.

This paper explores the use of relay techniques for interfer-
ence mitigation. We focus on the simplest interference channel
model, the Gaussian Z-interference channel (also known as the
one-sided interference channel), in which one of the receivers
gets an interference-free signal, the other receiver gets a
combination of the intended and the interfering signals, and
the channel is equipped with a noiseless link of fixed capacity
from one receiver to the other. Depending on the direction of
the noiseless link, the proposed model is named the Type I or
the Type II Gaussian Z-relay-interference channel, as shown
in Fig. 1.

The Type I Gaussian Z-relay-interference channel has a
digital relay link of finite capacity from the interference-free
receiver to the interfered receiver. Our main coding strategy for
the Type I channel is a relay scheme called partial interfer-
ence forwarding, in which the relay link is used for partial
interference subtraction at the interfered receiver. The idea
is to explore the fact that interference consists of structured
codewords, which can be described efficiently using a binning
technique. This extra piece of binning information enhances
the interference subtraction capability at the interfered re-
ceiver, thereby enlarging the overall achievable region for the
interference channel. Interestingly, our analysis shows that
even though the relay link is from the interference-free receiver
to the interfered receiver, it can benefit the interference-free
receiver more than it can for the interfered receiver.

This paper also shows that partial interference forwarding is
capacity achieving for the Type I channel in the strong interfer-
ence regime, and is asymptotically sum-capacity achieving in
the weak interference regime. In fact, in the weak interference
regime, every bit of relay link rate increases the sum rate
by one bit in the high signal-to-noise ratio (SNR) and high
interference-to-noise ratio (INR) limit. Essentially, a digital
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Fig. 1. Gaussian Z-interference channel with a relay link: (a) Type I; (b) Type II.

relay from the interference-free receiver to the interfered
receiver asymptotically achieves the cut-set bound for sum
capacity.

The Type II Gaussian Z-relay-interference channel differs
from the Type I channel in that the direction of the digital link
now goes from the interfered receiver to the interference-free
receiver. Our main coding strategy for the Type II channel
is based on a combination of the Han-Kobayashi common-
private information splitting scheme and two relaying strate-
gies: decode-and-forward and quantize-and-forward. In the
proposed scheme, interfered receiver, which decodes the com-
mon message and observes a noisy version of the neighbor’s
private message, describes the common message with a bin
index and describes the neighbor’s private message using a
quantization scheme. It is shown that, in the strong interference
regime, a special form of the proposed relaying scheme, which
deploys the decode-and-forward strategy only, is capacity
achieving. On the other hand, in the weak interference regime,
the largest rate region is achieved with pure quantize-and-
forward. Further, in the weak interference regime, the sum
capacity gain due to the digital link for the Type II channel is
upper bounded by half a bit. This is in direct contrast to the
Type I channel, in which each relay bit can be worth up to
one bit in sum capacity.

A. Literature Review

The Gaussian Z-interference channel has been extensively
studied in the literature. It is one of the few examples of
an interference channel (besides the strong interference case
[6], [7], [1] and the very weak interference case [2], [3], [4])
for which the sum capacity has been established. The sum
capacity for the Gaussian Z-interference channel in the weak
interference regime is achieved with both transmitters using
Gaussian codebooks and with the interfered receiver treating
the interference as noise [8], [5].

The fundamental decode-and-forward and quantize-and-
forward strategies for the relay channel are due to the classic
work of Cover and El Gamal [9]. Our study of the interference
channel with a relay link is motivated by the more recent
capacity results for a class of deterministic relay channels
investigated by Kim [10] and a class of modulo-sum relay
channels investigated by Aleksic et al. [11], where the re-
lay observes the noise in the direct channel. The situation

investigated in [10], [11] is similar to the Type I Gaussian Z-
relay-interference channel, where the interference-free receiver
observes a noisy version of the interference at the interfered
receiver and helps the interfered receiver by describing the
interference through the noiseless relay link.

The channel model studied in the paper is related to the
recent work of Sahin and Erkip [12], [13], Marić et al. [14]
and Dabora et al. [15], where the achievable rate regions and
relay strategies are studied for an interference channel with
an additional relay node. The relay observes the transmitted
signals from the inputs and contributes to the outputs of both
channels. In particular, [14], [15] propose an interference-
forwarding strategy which is similar to the one used for Type
I channel in this paper. However, the channel model of this
paper is considerably simpler. By focusing on a Gaussian Z-
interference channel with a “primitive” relay (in the sense of
[16]), we are able to derive more concrete achievability results
and upper bounds.

B. Outline of the Paper

The rest of this paper is organized as follows. Section II
presents achievability results for the Type I Gaussian Z-relay-
interference channel, where a partial-interference-forwarding
strategy is used. Capacity results are established for the strong
interference case. Asymptotic sum capacity result is estab-
lished for the weak interference case in the high SNR/INR
limit. Section III presents achievability results for the Type II
Gaussian Z-relay-interference channel using a combination of
the decode-and-forward scheme and the quantize-and-forward
scheme. Capacity results are derived in the strong interfer-
ence regime; capacity upper bound is derived in the weak
interference regime. Section IV provides concluding remarks
and a generalization of our results to the general Gaussian
interference channel with a relay link.

II. GAUSSIAN Z-INTERFERENCE CHANNEL WITH

A RELAY LINK: TYPE I

A. Channel Model

The Gaussian Z-interference channel is modeled as follows
(see Fig. 1(a)):{

Y1 = h11X1 + h21X2 + Z1

Y2 = h22X2 + Z2
(1)
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where X1 and X2 are the transmit signals with power con-
straints P1 and P2 respectively, hij represents the channel gain
from transmitter i to receiver j, and Z1, Z2 are independent
additive white Gaussian noises (AWGN) with power N . In
addition, the Type I Gaussian Z-relay-interference channel is
equipped with a digital noiseless link of fixed capacity R0

from the receiver 2 to the receiver 1.
To simplify the notation, the following definitions are used

throughout this paper:

SNR1 =
|h11|2P1

N
SNR2 =

|h22|2P2

N

INR2 =
|h21|2P2

N
γ(x) =

1
2

log(1 + x)

where log(·) is base 2. In addition, denote β = 1 − β.

B. Achievable Rate Region

Given Y2’s observation, how should it utilize the noiseless
relay link to help Y1 decode X1? Clearly, decode-and-forward
is not useful, as X1 is not observed at Y2. Instead, Y2 observes
a noisy version of the interference at Y1. Thus, quantize-and-
forward may be a sensible strategy in which Y2 is described to
Y1 using a rate-constrained quantization codebook. However,
quantize-and-forward does not take into account the fact that
X2 is not a Gaussian random noise, but a codeword from a
structured codebook. In addition, one may intentionally design
X2 in order to facilitate interference subtraction. This extra
degree of freedom allows us to achieve a higher rate than the
rate achievable with quantize-and-forward.

This paper proposes a combination of the Han-Kobayashi
common-private information splitting and a bin-and-forward
strategy for the Gaussian Z-relay-interference channel, in
which a common information stream is intentionally designed
for decoding at Y2 and forwarding to Y1 for subtraction. We
call such a relay strategy a partial-interference-forwarding
strategy. Our main result is the following achievability the-
orem.

Theorem 1: For the Type I Gaussian Z-interference chan-
nel with a digital relay link of limited rate R0 from the
interference-free receiver to the interfered receiver as shown
in Fig. 1(a), in the weak interference regime defined by
INR2 ≤ SNR2, the following rate region is achievable:

⋃
0≤β≤1

{
(R1, R2)

∣∣∣∣R1 ≤ γ

(
SNR1

1 + βINR2

)
,

R2 ≤ min {γ(SNR2), γ(βSNR2)+

γ

(
βINR2

1 + SNR1 + βINR2

)
+ R0

}}
. (2)

In the strong interference regime, defined by

SNR2 ≤ INR2 ≤ max{SNR2, INR∗
2}, (3)

where

INR∗
2 = (1 + SNR1)(2−2R0(1 + SNR2) − 1), (4)

Rate Power
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private
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Fig. 2. Common-private information splitting for Type I channel.

the capacity region is given by⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2)

R1 + R2 ≤ γ(SNR1 + INR2) + R0

⎫⎬
⎭ .

(5)
In the very strong interference regime defined by

INR2 ≥ max{SNR2, INR∗
2}, (6)

the capacity region is given by{
(R1, R2)

∣∣∣∣ R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2)

}
. (7)

Proof: We use the Han-Kobayashi [1] common-private
information splitting scheme with Gaussian input to prove
the achievability of the rate regions (2), (5) and (7). The
encoding procedure is as depicted in Fig. 2. User 1’s signal
X1 is intended for decoding at Y1 only. User 2’s signal
X2 is the superposition of private message U2 and common
message W2. The private message can only be decoded by
the intended receiver Y2, while the common message can be
decoded by both receivers. Independent Gaussian codebooks
of sizes 2nS1 , 2nS2 and 2nT2 are generated according to i.i.d.
Gaussian distributions X1 ∼ N (0, P1), U2 ∼ N (0, βP2), and
W2 ∼ N (0, βP2), respectively, where 0 ≤ β ≤ 1.

Decoding takes place in two steps. First, (W2, U2) are
decoded at Y2. The set of achievable rates (T2, S2) is the
capacity region of a Gaussian multiple-access channel, denoted
here by C2, where⎧⎨

⎩
T2 ≤ γ(βSNR2)
S2 ≤ γ(βSNR2)

S2 + T2 ≤ γ(SNR2).
(8)

After (W2, U2) are decoded at Y2, (X1, W2) are then decoded
at Y1 with U2 treated as noise, but with the help of the relay
link. This is a multiple-access channel with a rate-limited relay
Y2, who has complete knowledge of W2. Denote the capacity
region of such a multiple-access channel with a digital relay
link R0 by C1. We prove in Lemma 1 in Appendix A that
a bin-and-forward relay strategy is capacity achieving in this
case. The capacity region C1 is the set of (S1, T2) for which⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S1 ≤ γ

(
SNR1

1 + βINR2

)

T2 ≤ γ

(
βINR2

1 + βINR2

)
+ R0

S1 + T2 ≤ γ

(
SNR1 + βINR2

1 + βINR2

)
+ R0.

(9)
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An achievable rate region of the Gaussian Z-interference
channel with a relay link is then the set of all (R1, R2) such
that R1 = S1 and R2 = S2 + T2 for some (S1, T2) ∈ C1 and
(S2, T2) ∈ C2. Further, since C1 and C2 depend on the private-
common power splitting ratio β, the convex hull of the union
of all such (R1, R2) sets over all choices of β is achievable.

In the following, we first show that for each fixed β, the
set of achievable rates (R1, R2) is a pentagon. We then show
that the convex hull of the union of these pentagons reduces
to the regions (2), (5) and (7).

Fig. 3 illustrates an example of a (S2, T2)-pentagon (8) and
a (S1, T2)-pentagon (9) in a three dimensional diagram. As
S1 moves from its maximal value downward (i.e. from A to
C), the maximal achievable T2 + S2 increases from the sum
rate corresponding to A′ to that corresponding to C′. The sum
rate T2+S2 is a constant beyond C′, because the line segment
C′D′ is at 45 degrees. Now, since the line segment AC is also
at 45 degrees, from A to C, the sum S1 + T2 is a constant as
well. Consequently S1 + T2 + S2 is also a constant from A
to C. Therefore, when plotting R2 (which is S2 + T2) vs. R1

(which is S1), we obtain a pentagon shape with a 45-degree
edge A′′C′′ as shown in Fig. 4. Beyond point C, S2+T2 stays
as a constant as S1 decreases.

Mathematically, it is possible to use a Fourier-Motzkin
elimination (see e.g. [17]) to verify that for each fixed β, the
achievable (R1, R2)’s form a pentagon region characterized
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Fig. 5. The union of rate region pentagons in the weak interference regime.

by

Rβ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ

(
SNR1

1 + βINR2

)
R2 ≤ min{γ(SNR2), γ(βSNR2)+

γ

(
βINR2

1 + βINR2

)
+ R0}

R1 + R2 ≤ γ(βSNR2)+

γ

(
SNR1 + βINR2

1 + βINR2

)
+ R0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(10)
The convex hull of the union of these pentagons over β gives
the complete achievability region.

It turns out that the union of the pentagons, i.e.
⋃

0≤β≤1 Rβ ,
is a convex region. Therefore, convex hull is not needed here.
In the following, we give a proof of this fact and give an
explicit expression for the resulting achievable region.

Consider first the weak interference regime, where
INR2 ≤ SNR2. Ignore for now the constraint R2 ≤
γ(SNR2) and focus on an expanded pentagon defined
by {(R1, R2) |R1 ≤ f1(β), R2 ≤ f2(β), R1 + R2 ≤ f3(β)},
where f1(β), f2(β) and f2(β) are defined as

f1(β) = γ

(
SNR1

1 + βINR2

)
(11)

f2(β) = γ (βSNR2) + γ

(
βINR2

1 + βINR2

)
+ R0 (12)

f3(β) = γ (βSNR2) + γ

(
SNR1 + βINR2

1 + βINR2

)
+ R0.(13)

It is easy to verify that when β = 1, the expanded pentagon
reduces to a rectangular region, as shown in Fig. 5. Further,
as β decreases from 1 to 0, f1(β) is monotonically increasing
and both f2(β) and f3(β) are monotonically decreasing, while
f2(β)−f3(β) remains a constant in the INR2 ≤ SNR2 regime.
Since f1(β), f2(β) and f3(β) are all continuous functions of
β, as β decreases from 1 to 0, the upper left corner point of the
expanded pentagon moves vertically downward in the R2−R1

plane, while the lower right corner point moves downward and
to the right in a continuous fashion. Consequently, the union
of these expanded pentagons is defined by R1 ≤ γ(SNR1),
R2 ≤ γ(SNR2) + R0, and lower-right corner points of the
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pentagons (R1, R2) with⎧⎪⎪⎨
⎪⎪⎩

R1 = γ

(
SNR1

1 + βINR2

)

R2 = γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ R0

(14)
where 0 ≤ β ≤ 1. We prove in Appendix B that such a
region is convex when INR2 ≤ SNR2. Thus, convex hull is not
needed. Finally, incorporating the constraint R2 ≤ γ(SNR2)
gives the weak-interference achievable region (2).

Now, consider the strong interference regime, where
INR2 ≥ SNR2. In this regime, f1(β), f2(β) and f3(β) are all
increasing functions as β goes from 1 to 0. Consequently,⋃

0≤β≤1 Rβ = R0, as illustrated in Fig. 6. Thus, the achiev-
able rate region simplifies to⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ min{γ(SNR2), γ(INR2) + R0}
R1 + R2 ≤ γ(SNR1 + INR2) + R0

⎫⎬
⎭ (15)

which is equivalent to (5) by noting that

γ(INR2) + R0 ≥ γ(SNR2) (16)

when INR2 ≥ SNR2.
Finally, in the very strong interference regime

with INR2 ≥ max{SNR2, INR∗
2}, where INR∗

2 =
(1 + SNR1)(2−2R0(1 + SNR2) − 1), the constraint on
R1 + R2 in (5) becomes redundant and the rate region
reduces to (7). This concludes the achievability part of the
proof.

Next, we prove a converse in the strong and very strong
interference regimes. The converse is based on a technique
used in [1] and [7] for proving the converse for the strong
interference channel without the relay link. The main idea is
to show that when INR2 ≥ SNR2, if a rate pair (R1, R2) is
achievable for the Gaussian Z-interference channel with a relay
link, i.e., X1 can be reliably decoded at receiver 1 at rate R1,
and X2 can be reliably decoded at receiver 2 at rate R2, then
X2 must also be decodable at the receiver 1.

First, the reliable decoding of X2 at Y2 requires

R2 ≤ γ(SNR2). (17)

To show that X2 is also decodable at Y1, we note that after
X1 is decoded at Y1 (possibly with the help of the relay

link), receiver 1 may now subtract X1 from Y1 then scale
the resulting signal to obtain

Y
′
1 =

h22

h21
(Y1 − h11X1) = h22X2 +

h22

h21
Z1. (18)

When INR2 ≥ SNR2, i.e., h21 ≥ h22, the Gaussian noise
h22
h21

Z1 in this effective channel has a smaller variance than
the noise in Y2 = h22X2 +Z2. Since X2 is reliably decodable
at Y2, X2 must also be reliably decodable at Y1.

Now, because both X1 and X2 are always decodable at Y1

in the strong interference regime, the achievable rate region of
the Gaussian Z-interference channel with a digital relay link is
equivalent to the capacity region of the same channel in which
both X1 and X2 are required at Y1, and X2 is required at Y2.
Further, the capacity region of such a channel can only be
enlarged if X2 is given to Y2 by a genie. In such a case, the
channel reduces to a Gaussian multiple-access channel with
(X1, X2) as inputs, Y1 as the output, and with the same relay
link from Y2 to Y1, where the relay knows X2 perfectly. The
capacity of such a multiple-access channel with a relay link
is given by Lemma 1 in Appendix A:⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(INR2) + R0

R1 + R2 ≤ γ(SNR1 + INR2) + R0

⎫⎬
⎭
(19)

Combining (19) and (17), then applying (16) gives us (5).
Thus, we proved that when INR2 ≥ SNR2, the achievable rate
region of the Gaussian Z-interference channel with a relay link
must be included in (5), which, in the very strong interference
regime, reduces to (7).

C. Comments on Theorem 1

The achievability results for the classic Gaussian interfer-
ence channel are categorized to the weak interference, the
strong interference, and the very strong interference regimes.
The capacity region of the classic interference channel in the
weak interference case is still open. In the strong interference
case, the capacity region is known as a pentagon. In the
very strong interference case, the capacity region becomes a
rectangle. The result of the previous section shows that the
capacity region of the Type I Gaussian Z-relay-interference
channel follows the same pattern. It is interesting to note
that the relay link does not change the boundary between
the weak and the strong interference regimes, but it does
change the boundary between the strong and the very strong
interference regimes. In other words, receiver-side relaying
may potentially turn a strong interference channel into a
very strong interference channel, but it never turns a weak
interference channel into a strong interference channel.

It is instructive to compare the achievable regions of the
Gaussian Z-interference channel with and without the relay
link. Observe that when R0 = 0, the achievable rate region
(2) and the capacity region results (5) (7) reduce to previous
results obtained in [1] and [7].

In the strong and very strong interference regimes, the ca-
pacity region is achieved by transmitting common information
only at X2. In the very strong interference regime, the relay
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Fig. 7. Capacity region of the Gaussian Z-interference channel in the strong
interference regime with and without a digital relay link of Type I.

link does not increase capacity, because the interference is
already completely decoded and subtracted, even without the
help of the relay.

In the strong interference regime, the relay link increases
the capacity by helping the common information decoding at
Y1. In fact, a relay link of rate R0 increases the sum capacity
by exactly R0 bits. Further, the increase in sum capacity can
be arbitrarily divided between the two users, as long as the
individual rates are below their respectively interference-free
upper bound. This is because the relay link can either increase
the common information rate (which improve the total rate at
the interference-free receiver), or increase the power of the
common information component of X2 (which decreases the
noise at the interfered receiver), or do a combination of both.

As a numerical example, Fig. 7 shows the capacity region
of a Gaussian Z-interference channel in the strong interference
regime with and without the relay link. The channel parameters
are set to be SNR1 = SNR2 = 25dB, INR2 = 30dB. The
capacity region without the relay is the dash-dotted pentagon.
With R0 = 2 bits, the capacity region expands to the dashed
pentagon region, which represents an increase in sum rate of
exactly 2 bits. As R0 increases to 4 bits, the channel falls
into the very strong interference regime. The capacity region
becomes the solid rectangular region.

The situation in the weak interference regime is more
interesting. When INR2 ≤ SNR2, the achievable rate region
(2) is obtained by a Han-Kobayashi common-private power
splitting scheme. By inspection, the effect of a relay link is to
shift the rate region curve upward by R0 bits while limiting
R2 by its single-user bound γ(SNR2). Interestingly, although
the relay link of rate R0 is provided from the receiver 2 to
the receiver 1, it can help R2 by exactly R0 bits, while it can
only help R1 by strictly less than R0 bits!

The reason for this phenomenon is as follows. For the relay
to help increase R2 while keeping R1 fixed, X2 must increase
the common information rate. Since the common information
is known at Y2, relaying from Y2 to Y1 by binning achieves
the cut-set bound—every bit in the relay link is worth one
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Fig. 8. Achievable rate region of the Gaussian Z-interference channel in the
weak interference regime with and without a digital relay link of Type I.

bit in R2. On the other hand, for the relay to help increase
R1 while keeping R2 fixed, X2 needs to convert some of the
private information into common information. In other words,
the relay needs to use R0 to describe a larger portion of X2,
(which reduces the interference for user 1). The benefit of
interference reduction to R1 is in general strictly less than R0.
But, as the next section shows, the benefit is asymptotically
equal to R0 in the high SNR and high INR limit.

As a numerical example, Fig. 8 shows the achievable rate
region of a Gaussian Z-interference channel in the weak
interference regime with SNR1 = SNR2 = 25dB and INR2 =
20dB. The solid curve represents the rate region achieved
without the relay link. The dashed rate region is with a relay
rate of R0 = 2 bits. For most part of the curve, R0 can be
used to provide a 2-bit increase in R2, but a less than 2-bit
increase in R1.

It is illustrative to identify the correspondence between the
various points in the capacity region and different common-
private splittings. Point A corresponds to β = 1. This is where
the entire X2 is private message. In this case, it is easy to
verify that the first term of R2 in (2) is less than the second
term:

γ(SNR2) < γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ R0

(20)
As β decreases, more private message is converted into
common message, which means that less interference is seen at
receiver 1. As a result, R1 increases, R2 is kept at a constant
(since (20) continues to hold). Graphically, as β decreases
from 1, the achievable rate pair moves horizontally from point
A to the right until it reaches point B, corresponding to some
β∗, which is a critical point after which the second term of R2

in (2) becomes less than the first term γ(SNR2). The value of
β∗ can be obtained by solving the following equation:

γ(SNR2) = γ(β∗SNR2) + γ

(
β∗INR2

1 + SNR1 + β∗INR2

)
+ R0,
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which yields

β∗ =
(1 + SNR1)(1 + SNR2) − 22R0(1 + SNR1 + INR2)
22R0SNR2(1 + SNR1 + INR2) − INR2(1 + SNR2)

.

(21)
As β decreases further from β∗, more private message is
converted into common message, which makes R1 even larger.
However, when β < β∗, the amount of common message
can be transmitted is restricted by the interference link h21

and the relay link rather than the direct link h22 of user 2.
Therefore, user 2’s data rate cannot be kept as a constant; R2

also goes down as user 1’s rate goes up. As shown in Fig. 8,
the achievable rate pair moves from point B to point C as
β decreases from β∗ to 0. Point C corresponds to where the
entire X2 is common message.

D. Asymptotic Sum Capacity

Practical communication systems often operate in the
interference-limited regime, where both the signal and the
interference are much stronger than the receiver thermal noise.
In this section, we investigate the asymptotic sum capacity of
the Type I Gaussian Z-relay-interference channel in the weak
interference regime when

min{SNR1, SNR2, INR2} � 1. (22)

More precisely, we let noise power N → 0, while
keeping power constraints P1, P2, channel parameters hij ,
and the digital relay link rate R0 fixed. In other words,
SNR1, SNR2, INR2 → ∞, while their ratios are kept constant.

Denote the sum capacity of a Type I Gaussian Z-interference
channel with a relay link of rate R0 by Csum(R0). Without the
digital relay link, or equivalently R0 = 0, the sum capacity
of the classic Gaussian Z-interference channel in the weak
interference regime (i.e. INR2 ≤ SNR2) is given by [8], [5]:

Csum(0) = γ(SNR2) + γ

(
SNR1

1 + INR2

)
(23)

which is achieved by independent Gaussian codebooks and
treating the interference as noise at the receiver. In the high
SNR/INR limit, the above sum capacity becomes

Csum(0) ≈ 1
2

log
(

SNR2(SNR1 + INR2)
INR2

)
(24)

where the notation f(x) ≈ g(x) is used to denote lim f(x)−
g(x) = 0. In the above expression, the limit is taken as N → 0.

With a digital relay link of finite capacity R0, how many
bits can it contribute to the sum rate? Intuitively, the sum rate
increase due to the relay link must be bounded by R0. In
the following, we show that in the high SNR/INR limit, the
asymptotic sum capacity increase is in fact R0 in the weak-
interference regime.

Theorem 2: For the Type I Gaussian Z-interference chan-
nel with a digital relay link of limited rate R0 from the
interference-free receiver to the interfered receiver as shown
in Fig. 1(a), when INR2 ≤ SNR2, the asymptotic sum capacity
is given by

Csum(R0) ≈ Csum(0) + R0. (25)

Proof: We first prove the achievability. As illustrated in
Fig. 5 the sum rate of the Type I Gaussian Z-relay-interference
channel is achieved with β = β∗, where β∗ is as derived in
(21). In the high SNR/INR limit, we have

lim
N→0

β∗ =
2−2R0

1 + (1 − 2−2R0) INR2

SNR1

. (26)

Substituting this β∗ into the achievable rate pair in (2), we
obtain the asymptotic rate pair as⎧⎪⎨

⎪⎩
R1 ≈ 1

2
log
(

1 +
SNR1

INR2

)
+ R0

R2 ≈ 1
2

log(SNR2)
(27)

which gives the following asymptotic sum rate:

Rsum ≈ 1
2

log
(

SNR2(SNR1 + INR2)
INR2

)
+ R0

≈ Csum(0) + R0. (28)

The converse proof starts with Fano’s inequality. Denote
the output of the digital relay link over the n-block by V n.
Since the digital link has a capacity limit R0, V n is a discrete
random variable with H(V n) ≤ nR0. For any codebook of
block length n, we have

n(R1 + R2)
(a)

≤ I(Xn
1 ; Y n

1 , V n) + I(Xn
2 ; Y n

2 ) + nεn

= I(Xn
1 ; Y n

1 ) + I(Xn
1 ; V n|Y n

1 ) + I(Xn
2 ; Y n

2 ) + nεn

(b)

≤ I(Xn
1 ; Y n

1 ) + H(V n|Y n
1 ) + I(Xn

2 ; Y n
2 ) + nεn

(c)

≤ I(Xn
1 ; Y n

1 ) + I(Xn
2 ; Y n

2 ) + nR0 + nεn

= h(Y n
1 ) − h(Y n

1 |Xn
1 ) + h(Y n

2 ) − h(Zn
2 ) + nR0 + nεn

= h(Y n
1 ) − h(Zn

2 ) + h(h22X
n
2 + Zn

2 ) −
h(h21X

n
2 + Zn

1 ) + nR0 + nεn

(d)
= h(Y n

1 ) − h(Zn
2 ) + h(Xn

2 + Z̃n
2 ) − h(Xn

2 + Z̃n
1 ) +

n log
|h22|2
|h21|2 + nR0 + nεn (29)

where
(a) follows from Fano’s inequality;
(b) is due to H(V n|Xn

1 , Y n
1 ) ≥ 0;

(c) is due to H(V n|Y n
1 ) ≤ H(V n) ≤ nR0;

(d) is where Z̃n
1 and Z̃n

2 are defined as Z̃n
1 =

Zn
1 /h21, Z̃

n
2 = Zn

2 /h22.
Since Z1 and Z2 are i.i.d. Gaussian random vectors with
the same variance, when h21 ≤ h22 (or equivalently,
INR2 ≤ SNR2), Z̃1 has a larger variance than Z̃2. In this case,
we can use an extremal inequality due to Liu and Viswanath
[18] to show that under an average power constraint nP2 on
Xn

2 , h(Xn
2 + Z̃n

2 ) − h(Xn
2 + Z̃n

1 ) is maximized when Xn
2 is

an i.i.d. Gaussian random vector with distribution N (0, P2).
This technique was used earlier by Motahari and Khandani [3,
Lemma 1].

Now, consider Y n
1 = h11X

n
1 + h21X

n
2 + Zn

1 . Note that
h(Y n

1 ) is maximized under power constraints nP1 on Xn
1 and

nP2 on Xn
2 when Xn

1 and Xn
2 are i.i.d. Gaussian distributed
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as N (0, P1) and N (0, P2), respectively. Since the same i.i.d.
distribution N (0, P1) for Xn

1 maximizes both h(Y n
1 ) and

h(Xn
2 + Z̃n

2 )−h(Xn
2 + Z̃n

1 ) simultaneously, it must maximize
the entire right-hand side of (29).

Evaluating right-hand side of (29) with X1 ∼ N (0, P1) and
X2 ∼ N (0, P2), we obtain the following upper bound for the
sum rate:

R1 + R2 ≤ γ(SNR2) + γ

(
SNR1

1 + INR2

)
+ R0 + εn

= Csum(0) + R0 + εn (30)

where εn → 0 as n goes to infinity. Note that this upper
bound holds for all ranges of SNR1, SNR2, and INR2 as long
as INR2 ≤ SNR2. This, when combined with the asymptotic
achievability result proved earlier, gives the asymptotic sum
capacity Csum(R0) ≈ Csum(0) + R0.

The above result shows that the partial-interference-
forwarding strategy essentially meets the sum-rate cut-set
bound asymptotically at high SNR/INR. Each bit in the digital
relay link is worth one bit to the sum capacity.

We have thus far focused on the sum-capacity achieving
power splitting ratio β∗. As β ≤ β∗, the achievable rate pair
goes from point B to point C along the dashed curve as shown
in Fig. 8. It turns out that for any fixed β ≤ β∗, the rate sum
asymptotically approaches the sum capacity upper bound. To
see this, fix some arbitrary β ≤ β∗, the sum rate corresponding
to this β is given in Theorem 1 by:

Rsum = γ

(
SNR1

1 + βINR2

)
+ γ(βSNR2) +

γ

(
βINR2

1 + SNR1 + βINR2

)
+ R0

=
1
2

log
(

1 + βSNR2

1 + βINR2

)
+

γ(SNR1 + SNR2) + R0. (31)

Let N → 0, then eventually

β min{SNR2, INR2} � 1. (32)

In this case, the sum rate goes to

Rsum ≈ 1
2

log
(

SNR2(SNR1 + INR2)
INR2

)
+ R0, (33)

which is again the asymptotic sum capacity. This calculation
implies that in the high SNR/INR regime, the dashed curve in
Fig. 8 has an initial slope of -1 as β goes from β∗ to 0.

Interestingly, partial interference forwarding is not the only
way to asymptotically achieve the sum capacity of the Type I
Gaussian Z-relay-interference channel. In the following, we
show that a quantize-and-forward relaying scheme is also
asymptotically sum capacity achieving.

In the quantize-and-forward scheme, no common-private
information splitting is performed. Each receiver only decodes
the message intended for it. As shown in Fig. 9, receiver 2
compresses its received signal Y2 into Ŷ2, then forwards it to
the receiver 1 through the digital link R0.

X1

X2

Y1

Y2

Z1

Z2

h11

h22

h21

Ŷ2

R0

Fig. 9. Quantize-and-forward in Gaussian Z-interference relay channel.

Clearly, the rate of user 2 is given by

R2 = max
p(x2)

I(X2; Y2). (34)

Using the Wyner-Ziv coding strategy for the relay channel
[19], [9], for a fixed p(x2), the following rate for user 1 is
achievable:

R1 = max
p(x1)p(ŷ2|y2)

I(X1; Y1, Ŷ2) (35)

under the constraint

I(Y2; Ŷ2|Y1) ≤ R0. (36)

The optimization in (35) is in general hard. Here, we adopt
independent Gaussian codebooks with X1 ∼ N (0, P1) and
X2 ∼ N (0, P2), and a Gaussian quantization scheme for the
compression of Y2:

Ŷ2 = Y2 + e (37)

where e is a Gaussian random variable independent of Y2,
with a distribution N (0, σ2). We show in Appendix C that this
choice of p(x1)p(x2)p(ŷ2|y2) gives the following achievable
rate pair:⎧⎨

⎩ R1 = γ

(
SNR1

1 + INR2

)
+ R0 − δ0(R0)

R2 = γ(SNR2)
(38)

where

δ0(R0) =

γ

(
(22R0 − 1)(1 + SNR2 + INR2)(1 + SNR1 + INR2)

(1 + INR2)((1 + SNR1)(1 + SNR2) + INR2)

)
.

Let N → 0, the above rate pair asymptotically goes to⎧⎨
⎩ R1 ≈ 1

2
log
(

1 +
SNR1

INR2

)
+ R0

R2 ≈ 1
2 log(SNR2)

(39)

which is the same as the asymptotic rate pair achieved with
β = β∗ using the partial-interference-forwarding scheme.
Therefore, quantize-and-forward also achieves the asymptotic
sum capacity (25). We remark that this is akin to the capacity
result for a class deterministic relay channel [10], where both
bin-and-forward and quantize-and-forward are shown to be
capacity achieving.
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III. GAUSSIAN Z-INTERFERENCE CHANNEL WITH

A RELAY LINK: TYPE II

As a counterpart of the Type I channel considered in the
previous section, this section studies the Type II Gaussian Z-
relay-interference channel, where the relay link goes from the
interfered receiver to the interference-free receiver as shown
in Fig. 1(b). Intuitively, when the interference link is weak,
the digital link would not be as efficient as in the Type I
channel, because receiver 1’s knowledge of X2 is inferior to
that of the receiver 2. However, when the interference link
is very strong, receiver 1 becomes a better receiver for X2

than receiver 2, in which case the digital link is capable of
increasing user 2’s rate by as much as R0. This section makes
these intuitions precise by deriving an achievability theorem
for the weak and moderately strong interference regimes, and
a capacity theorem for the strong and very strong interference
regimes.

A significant difference between the Type I and Type II
channel models is that, in the Type I channel, the relay
(Y2) observes a noisy version of the interference at the relay
destination (Y1), thus partial interference forwarding, which
exploits the codebook structure of the interference signal is a
natural relay strategy. In the Type II channel, the relay (Y1)
now observes a noisy version of the intended signal at the relay
destination (Y2). Thus, decode-and-forward and quantize-and-
forward become natural relay strategies. The main result of
this section is an achievability region based on a combination
of these two relay strategies and the Han-Kobayashi common-
private information splitting scheme, whereas the relay de-
codes the common information and forwards the bin index
using a part of the digital link and forwards quantization
information of the private information using the other part of
the digital link.

A. Achievable Rate Region

Theorem 3: For the Type II Gaussian Z-interference chan-
nel with a digital relay link of limited rate R0 from the
interfered receiver to the interference-free receiver as shown
in Fig. 1(b), in the weak interference regime defined by
INR2 ≤ SNR2, the following rate region is achievable

⋃
0≤β≤1

{
(R1, R2)

∣∣∣∣R1 ≤ γ

(
SNR1

1 + βINR2

)
,

R2 ≤ γ(βSNR2)+ γ

(
βINR2

1 + SNR1 + βINR2

)
+ δ(β, R0)

}
,

(40)

where

δ(β, R0) = γ

(
β(22R0 − 1)INR2

22R0(1 + βSNR2) + βINR2

)
. (41)

In the moderately strong interference regime, defined by

SNR2 ≤ INR2 ≤ 22R0(1 + SNR2) − 1
�
= INR†

2, (42)

the following rate region is achievable:

co

⎧⎨
⎩

⋃
α∈R,0≤β≤1, Ra+Rb≤R0

Rα,β(Ra, Rb)

⎫⎬
⎭ (43)

Rate Power

private

common

private

X1

X2

Y1

Y2

U2

W2

Z1

Z2

R0

S1

T2

S2

P1

βP2

βP2

h11

h22

h21

Fig. 10. Common-private information splitting for Type II channel.

where “co” denotes convex hull and Rα,β(Ra, Rb) is a pen-
tagon region given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ( SNR1

1+βINR2
)

R2 ≤ min {γ(SNR2) + Rb + η(α, β, Ra),
γ(βSNR2) + γ

(
βINR2

1+βINR2

)
+ζ(α, β, Ra)}

R1 + R2 ≤ γ(βSNR2) + γ
(

SNR1+βINR2

1+βINR2

)
+ζ(α, β, Ra)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(44)
where

ζ(α, β, Ra) = γ

(
βINR2

(1 + βSNR2)(1 + σ2

N )

)
, (45)

and

η(α, β, Ra) =

γ

(
(1 + 2αβ + α2β)INR2 + ββα2INR2SNR2

(1 + SNR2)(1 + σ2

N )

)
(46)

with

σ2

N
=

1 + SNR2 + (1 + 2αβ + α2β)INR2 + ββα2INR2SNR2

(22Ra − 1)(1 + SNR2)
.

(47)
In the strong interference regime defined by

INR†
2 ≤ INR2 ≤ (1 + SNR1)INR†

2

�
= INR‡

2, (48)

the capacity region is given by⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2) + R0

R1 + R2 ≤ γ(SNR1 + INR2)

⎫⎬
⎭ . (49)

In the very strong interference regime defined by

INR2 ≥ INR‡
2, (50)

the capacity region is given by{
(R1, R2)

∣∣∣∣ R1 ≤ γ(SNR1)
R2 ≤ γ(SNR2) + R0

}
. (51)

Proof: We first prove the achievability of the rate region
given in (43). it will be shown that this is an achievable rate
region not only for the moderately strong interference regime,
but also for any INR and SNR. We then show that (43) reduces
to (40) in the weak interference regime, and reduces to (49)
and (51) in the strong and very strong interference regimes,
respectively.

The achievability of (43) is based on the Han-Kobayashi
common-private information splitting scheme and the same
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U2

W2

W2

Z ∼ N (0, N)

Y2

RaRb

h2

h2

Ȳ1

Ŷ1

Fig. 11. Gaussian multiple-access channel with two digital relay links.

codebooks as in Theorem 1. The encoding procedure is as
shown in Fig. 10.

A two-step decoding procedure is used. Consider first the
decoding of (X1, W2) at Y1. The achievable set of (S1, T2) is
the capacity region of a multiple-access channel, denoted by
C1, where⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S1 ≤ γ

(
SNR1

1 + βINR2

)

T2 ≤ γ

(
βINR2

1 + βINR2

)

S1 + T2 ≤ γ

(
SNR1 + βINR2

1 + βINR2

)
.

(52)

Next, consider the decoding of (W2, U2) at Y2 with the
help of a digital relay link of rate R0. This is a multiple-
access channel with a rate-limited relay, where the relay has
complete knowledge of W2 and a noisy observation h21U2 +
Z1, obtained by subtracting X1 and W2 from the received
signal at Y1. Each of these two pieces of information is useful
for decoding (W2, U2) at Y2.

We now consider a relay scheme which splits the digital
link in two parts: Ra bits of the digital link for describing
W2, and Rb for describing U2, where Ra + Rb = R0. Since
W2 is perfectly known at the relay, a straightforward binning
technique of decode-and-forward can be used to describe
W2. By Lemma 1 of Appendix A, a relay link of rate Rb

enlarges the capacity region of the multiple-access channel by
increasing the rate for W2 and the sum rate by exactly Rb.

On the other hand, since only a noisy version of U2 is
available at the relay, a quantize-and-forward strategy using
Wyner-Ziv coding ([19], [9]) may be used for describing U2.
A straightforward application of quantize-and-forward would
be to quantize h21U2 + Z1 with Y2 used as the decoder
side information. However, the presence of W2 offers other
possibilities. First, the decoder of the multiple-access channel
may choose to decode W2 before decoding U2, in which
case W2 becomes an additional decoder side information for
Wyner-Ziv coding. Second, instead of quantizing h21U2 + Z1

with W2 completely subtracted from the relay’s observation,
the relay may choose to subtract W2 partially—doing so can
benefit the Wyner-Ziv rate. This second approach is adopted
for the rest of the proof. Interestingly, as will be verified later,
the second approach turns out to include the first approach as
a special case.

More specifically, let the relay form the following fictitious
signal

Ȳ1 = h21(U2 + W2) + αh21W2 + Z1 (53)

for some α ∈ R. The proposed relay scheme, which com-
bines the decode-and-forward technique and the quantize-and-
forward technique, is now illustrated in Fig. 11, where W2 and
U2 are the inputs of the multiple-access channel, (Y2, Ŷ1) is
the output, and Ŷ1 is a quantized version of Ȳ1. With complete
knowledge of W2 at the relay, by Lemma 1 in Appendix A,
the capacity of this multiple-access relay channel, denoted by
C2, is given by the set of rates (S2, T2) where⎧⎨

⎩
S2 ≤ I(U2; Y2, Ŷ1|W2)
T2 ≤ I(W2; Y2, Ŷ1|U2) + Rb

S2 + T2 ≤ I(U2, W2; Y2, Ŷ1) + Rb

(54)

Similar to Theorem 1, we adopt a Gaussian quantization
scheme to quantize Ȳ1:

Ŷ1 = Ȳ1 + e (55)

where e is a Gaussian random variable independent of Ȳ1, with
a distribution N (0, σ2). With the encoder side information W2

at the input of the relay link and the decoder side information
Y2 at the output of the relay link, the Wyner-Ziv coding rate
for quantizing Ȳ1 into Ŷ1 is given by [20] [9]

I(Ŷ1; W2, Ȳ1) − I(Ŷ1; Y2) ≤ Ra. (56)

But

I(Ŷ1; W2, Ȳ1) − I(Ŷ1; Y2)
= I(Ŷ1; Ȳ1) + I(Ŷ1; W2|Ȳ1) − I(Ŷ1; Y2)
(a)
= I(Ŷ1; Ȳ1) − I(Ŷ1; Y2)
(b)
= I(Ŷ1; Ȳ1|Y2) (57)

where both (a) and (b) come from the fact that Ŷ1 = Ȳ1 + e
and e is independent of W2 or Y2. Thus, the rate constraint
becomes

I(Ŷ1; Ȳ1|Y2) ≤ Ra. (58)

To fully utilize the channel, we set Ŷ1 to be such that
I(Ŷ1; Ȳ1|Y2) is equal to Ra. To find σ2, note that

Ra = I(Ŷ1; Ȳ1|Y2)
= h(Ŷ1|Y2) − h(Ŷ1|Ȳ1, Y2)

=
1
2

log(2πeσ2
Ŷ1|Y2

) − 1
2

log(2πeσ2)

=
1
2

log

(
σ2

Ŷ1|Y2

σ2

)
(59)

where σ2
Ŷ1|Y2

, the conditional minimum mean-squared error

(MMSE) of Ŷ1 given Y2, can be calculated as

σ2
Ŷ1|Y2

= σ2
Ŷ1

− σŶ1,Y2
(σ2

Y2
)−1σY2,Ŷ1

= (ββα2|h21|2|h22|2P 2
2 + (|h22|2P2 + N)(N + σ2) +

(1 + 2αβ + α2β)P2|h21|2N)/(|h22|2P2 + N). (60)

Substituting the above σ2
Ŷ1|Y2

into (59), we obtain (47).
Now, we evaluate the multiple-access relay channel capacity

region C2 in (54). Define⎧⎪⎪⎨
⎪⎪⎩

I(U2; Ŷ1|Y2, W2)
�
= ζ(α, β, Ra)

I(W2; Ŷ1|Y2, U2)
�
= ξ(α, β, Ra)

I(W2, U2; Ŷ1|Y2)
�
= η(α, β, Ra).

(61)
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Applying Gaussian distributions W2 ∼ N (0, βP2) and U2 ∼
N (0, βP2), C2 becomes⎧⎨
⎩

S2 ≤ γ(βSNR2) + ζ(α, β, Ra)
T2 ≤ γ(βSNR2) + ξ(α, β, Ra) + Rb

S2 + T2 ≤ γ(SNR2) + η(α, β, Ra) + Rb.
(62)

The computations of ζ(α, β, Ra), ξ(α, β, Ra) and η(α, β, Ra)
again involve Gaussian MMSE expressions. First,

η(α, β, Ra) = h(Ŷ1|Y2) − h(Ŷ1|U2, W2, Y2)

=
1
2

log

(
σ2

Ŷ1|Y2

N + σ2

)
. (63)

Substituting (60) into the above, we obtain (46). Likewise,

ζ(α, β, Ra) = h(Ŷ1|Y2, W2) − h(Ŷ1|U2, W2, Y2)

=
1
2

log

(
σ2

Ŷ1|Y2,W2

N + σ2

)
. (64)

A similar computation leads to (45). The computation of
ξ(α, β, Ra) can be done in a similar fashion, but the detailed
expression does not affect our final result.

Finally, an achievable rate region for the Gaussian Z-
interference channel with a relay link is a set of (R1, R2)
with R1 = S1 and R2 = S2 + T2, for which (S1, T2) ∈ C1

and (S2, T2) ∈ C2. Combining the C1 region (52) and the C2

region (62) in the same manner as in the proof of Theorem 1,
we obtain a pentagon achievable rate region Rα,β(Ra, Rb) for
each fixed α, 0 ≤ β ≤ 1 and Ra + Rb = R0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ( SNR1

1+βINR2
)

R2 ≤ min {γ(SNR2) + Rb + η(α, β, Ra),
γ(βSNR2) + γ

(
βINR2

1+βINR2

)
+ζ(α, β, Ra)}

R1 + R2 ≤ γ(βSNR2) + γ
(

SNR1+βINR2

1+βINR2

)
+ζ(α, β, Ra)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(65)
Therefore, the overall achievable rate region is

co

⎧⎨
⎩

⋃
α∈R,0≤β≤1, Ra+Rb≤R0

Rα,β(Ra, Rb)

⎫⎬
⎭ (66)

This concludes the proof of the general achievability region
(43).

In the following, we show that (40), (49) and (51) are all
included in the above achievable rate region.

First, consider the weak interference regime, where
INR2 ≤ SNR2. For any nonnegative Rb and when
INR2 ≤ SNR2, it is easy to verify the following two
inequalities:

γ(βSNR2) + γ

(
βINR2

1 + βINR2

)
≤ γ(SNR2) + Rb (67)

and

ζ(α, β, Ra) ≤ η(α, β, Ra). (68)

Thus, the second term in the minimization in the expression
of R2 in (65) is always less than the first term. As a result,
Rα,β(Ra, Rb) simplifies to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ( SNR1

1+βINR2
)

R2 ≤ γ(βSNR2) + γ
(

βINR2

1+βINR2

)
+ζ(α, β, Ra)

R1 + R2 ≤ γ(βSNR2) + γ
(

SNR1+βINR2

1+βINR2

)
+ζ(α, β, Ra)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(69)
Inspecting the above region, we see that Ra enters the above
expression only through ζ(α, β, Ra). It is easy to verify that
ζ(α, β, Ra) is a monotonically nondecreasing function of Ra.
Thus, the maximum achievability region is obtained for Ra =
R0 and Rb = 0. This means that a pure quantization scheme
is optimal in the weak interference regime.

Further, α enters the rate region expression also only
through ζ(α, β, R0). Thus, we can choose α to maximize
ζ(α, β, R0), or equivalently, to minimize σ2 in (47). Taking
the derivative of (47) with respect to α and setting it to zero,
the optimal α is

α∗ = − 1
1 + βSNR2

. (70)

Substituting α∗ into (47), we obtain

σ2

N
=

1
22R0 − 1

(
1 +

βINR2

1 + βSNR2

)
, (71)

which gives a derivation of (41):

ζ(α∗, β, R0) = γ

(
β(22R0 − 1)INR2

22R0(1 + βSNR2) + βINR2

)
�
= δ(β, R0).

(72)
Finally, we take the union of all Rα∗,β(R0, 0). Substitute

the above δ(β, R0) into (69) and denote the rate constraints
of the pentagon as

f1(β) = γ

(
SNR1

1 + βINR2

)

f2(β) = γ (βSNR2) + γ

(
βINR2

1 + βINR2

)
+ δ(β, R0)

f3(β) = γ (βSNR2) + γ

(
SNR1 + βINR2

1 + βINR2

)
+ δ(β, R0).

It is easy to check that, first, the pentagon reduces to a
rectangle when β = 1. Second, f2(β) − f3(β) is a constant.
Third, when INR2 ≤ SNR2, we have f

′
1(β) < 0 and f

′
2(β) =

f
′
3(β) ≥ 0. Therefore, as β decreases from 1 to 0, f1(β)

is monotonically increasing, while both f2(β) and f3(β) are
monotonically decreasing. This is exactly the same situation
as the proof of Theorem 1; see Fig. 5. Consequently, the union
of achievable pentagons,

⋃
0≤β≤1 Rα∗,β(R0, 0) is defined by

R1 ≤ γ(SNR1), R2 ≤ γ(SNR2) + δ(β, R0), and lower-right
corner points of the pentagons⎧⎪⎪⎨
⎪⎪⎩

R1 = γ

(
SNR1

1 + βINR2

)

R2 = γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ δ(β, R0).

(73)
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We prove in Appendix D that this region is convex when
INR2 ≤ SNR2. Therefore, the convex hull is not needed. This
establishes the rate region (40) for the weak interference
regime.

In the moderately strong interference regime, where
SNR2 ≤ INR2 ≤ INR†

2, the achievability of (43) is directly
from the general achievability region. Note that, in this regime,
the rate region is achieved by a mixed scheme, which include
both decode-and-forward and quantize-and-forward strategies.

Finally, consider the strong interference regime, where
INR2 ≥ INR†

2 and the very strong interference regime, where
INR2 ≥ INR‡

2. We show that (49) and (51) are the capacity
regions, respectively.

First, by setting1 Rb = R0, Ra = 0 and β = 0, the
achievable rate region Rα,β(Ra, Rb) in (65) reduces to⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ min {γ(SNR2) + R0, γ(INR2)}

R1 + R2 ≤ γ(SNR1 + INR2)

⎫⎬
⎭ .

(74)
This rate region reduces to (49) in the strong interference
regime, because

γ(SNR2) + R0 ≤ γ(INR2) (75)

when INR2 ≥ INR†
2. Thus, (49) is achievable.

Further, in the very strong interference regime, where
INR2 ≥ INR‡

2, the constraint on R1 + R2 in (49) becomes
redundant. Thus, the rate region reduces to (51).

Next, we give a converse proof to show that (49) and (51)
are indeed the capacity regions in the strong and very strong
interference regimes, respectively. Following the same idea as
in the converse proof of Theorem 1, we show if (R1, R2) is
in the achievable rate region for the Type II Gaussian Z-relay-
interference channel, i.e., X1 can be reliably decoded at Y1

at rate R1, and X2 can be reliably decoded at Y2 at rate R2,
then X2 must also be decodable at the Y1.

First, observe that by the cut-set upper bound [21], reliable
decoding of X2 at Y2 requires

R2 ≤ γ(SNR2) + R0. (76)

To show that X2 must be decodable at Y1, note that after the
decoding of X1 at Y1, X1 can be subtracted from the received
signal to form

Ỹ1 = h21X2 + Z1. (77)

The capacity of this channel is γ(INR2). On the other hand,
R2 is bounded by γ(SNR2)+R0, which is less than γ(INR2)
when INR2 ≥ INR†

2. So, X2 is always decodable based on Ỹ1.
Now, since both X1 and X2 are decodable at Y1 in the

strong interference regime, the achievable rate region of the
Gaussian Z-relay-interference channel in the strong interfer-
ence regime must be a subset of the capacity region of a
Gaussian multiple-access channel with X1, X2 as inputs and
Y1 as output, which is⎧⎨
⎩(R1, R2)

∣∣∣∣∣∣
R1 ≤ γ(SNR1)
R2 ≤ γ(INR2)

R1 + R2 ≤ γ(SNR1 + INR2)

⎫⎬
⎭ . (78)

1The value of α does not affect Rα,β(Ra, Rb) when Ra = 0.

Combining (76), (78), and observing that

γ(SNR2) + R0 ≤ γ(INR2) (79)

when INR2 ≥ INR†
2, we proved that the achievable rate region

of the Gaussian Z-relay-interference channel must be bounded
by (49) when INR2 ≥ INR†

2, which reduces to (51) when
INR2 ≥ INR‡

2.

The achievability proof for the weak interference case in
Theorem 3 is based on a quantize-and-forward scheme in
which Y1 quantizes a fictitious signal Ȳ1 = h21(U2 + W2) +
α∗h21W2 + Z1, which is a linear combination of its own
received signal and the decoded W2, with α∗ optimized for
maximum overall achievable rate region. The quantized Ȳ1

is decoded with Y2 = h22(U2 + W2) + Z2 as decoder side
information in establishing the multiple-access relay channel
capacity region C2 with Wyner-Ziv coding.

As mentioned earlier, another possible quantize-and-forward
strategy is to restrict the decoding order for the multiple-access
channel C2 to be that of decoding W2 first, then U2. In this
case, W2 would be known at both the input and the output
of the relay link when decoding U2. Thus, the relay only has
to quantize h21U2 + Z1 with h22U2 + Z2 as decoder side
information in Wyner-Ziv coding.

Surprisingly, these two different strategies give the exact
same achievable rate region in the weak-interference regime.
This fact is shown in Appendix E, which gives an alternative
proof for the weak-interference result in Theorem 3.

B. Comments on Theorem 3

Unlike the Type I channel, the achievable rate region for
the Type II Gaussian Z-relay-interference channel has a more
complicated structure. The rate region is no longer neatly
divided into weak, strong and very strong interference regimes.
There is a new “moderately strong” interference regime,
where a combination of decode-and-forward and quantize-and-
forward strategies may be needed.

In the strong and very strong interference regimes, the relay
expands the capacity region by decoding X2 and forwarding
its bin index to help Y2 decode X2. The boundaries of the
strong and very strong regimes depend on the relay link rate.
In these two regimes, the entire X2 is common information.
Due to the strong interference link, this common message X2

is guaranteed to be decodable at Y1.
As a numerical example, Fig. 12 shows how the ca-

pacity region of a Gaussian Z-interference channel in the
strong and very strong interference regimes is expanded by
the digital relay link from the interfered receiver to the
interference-free receiver. The channel parameters are set
to be SNR1 = SNR2 = 20 dB and INR2 = 55 dB. Without
the digital link, this is a classic Gaussian Z-interference
channel in the very strong interference regime, where
INR2 ≥ SNR2(1 + SNR1). In this regime, the capacity region
is a rectangle [7], as depicted by the dash-dotted region in
Fig.12. With a 2-bit digital link, the Gaussian Z-interference
channel remains in the very strong interference regime. The
capacity region, given by (51) is depicted by the dashed
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Fig. 12. Capacity region of the Gaussian Z-interference channel in the strong
interference regime with and without a digital relay link of Type II.
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Fig. 13. Capacity region of the Gaussian Z-interference channel in the weak
interference regime with and without a digital relay link of Type II.

rectangular region in Fig. 12. It represents a rate increase in
R2 of exactly 2 bits. When R0 = 4 bits, the Gaussian Z-
interference channel falls into the strong interference regime.
The capacity region, given by (49), becomes the solid pentagon
region. In this regime, for some R1 lower than a certain
threshold, the rate increase in R2 is exactly 4 bits. For other
values of R1, the rate increase in R2 is less than 4 bits. Further
increase in the rate of the digital link would increase the rate
constraint on R2, but not the sum rate.

In the weak interference regime, where INR2 ≤ SNR2,
Theorem 3 shows that a pure quantize-and-forward of the
private message should be used for relaying. Intuitively, this
is because, when the interference link is weak, the common
message rate is limited by the interference link, which cannot
be helped by relaying. Thus, the digital link ought to focus on
helping the decoding of private information at Y2 by quantize-
and-forward.

As a numerical example, Fig. 13 shows the achiev-

able rate region of a Gaussian Z-interference channel with
SNR1 = SNR2 = 20 dB and INR2 = 15 dB with and without
the relay link, which falls into the weak interference regime.
The dashed region denoted by points A′ and B represents the
rate region achieved without the digital link. The solid rate
region denoted by points A and B is with a 2-bit digital link.

In Fig. 13, points A and A′ both correspond to β = 1,
where the entire X2 is the private message. As β decreases
from 1 to 0, the rate pair moves from point A (or A′) to
point B, which corresponds to β = 0, where the entire X2

is common message. From the rate pair expression (40), the
effect of the digital link is to shift the rate region of the
channel without the relay upward by δ(β, R0) bits. Since
δ(β, R0) is monotonically decreasing as β decreases from 1
to 0, for fixed R1, the largest increase in R2 corresponds
to δ(1, R0), i.e. the increase from point A′ to A. Note that
A and A′ are the maximum sum-rate points of the Type II
Gaussian Z-interference channel with and without the relay.
They correspond to all-private message transmission, which is
in contrast to the Type I case where the maximum sum rate
is achieved with some β∗ 
= 1. Finally, we note that the relay
does not affect point B, which corresponds to β = 0, because
δ(0, R0) = 0.

C. Sum Capacity Upper Bound

For the Type I channel, the relay link asymptotically
achieves the sum capacity cut-set bound in the weak interfer-
ence regime and high SNR/INR limit. For the Type II channel,
however, the cut-set bound is not achievable.

By Theorem 3, an achievable sum rate of the Type II
Gaussian Z-interference channel with a relay link of rate R0

in the weak interference regime is

Rsum = γ

(
SNR1

1 + INR2

)
+ γ(SNR2) + δ(1, R0) (80)

which is obtained by setting β = 1 in (40). Comparing
with the sum capacity of the Gaussian Z-interference channel
without the relay in the weak interference regime (23), the
sum-rate increase using the relay scheme of Theorem 3 is
upper bounded by

δ(1, R0) =
1
2

log
(

1 + SNR2 + INR2

1 + SNR2 + 2−2R0 INR2

)

≤ γ

(
INR2

1 + SNR2

)

≤ 1
2

(81)

where INR2 ≤ SNR2 is used in the last inequality. This is
illustrated by an example in Fig. 13, where the rate increase
from point A′ to point A is about 0.2 bits, which is less than
1/2 bits and is a fraction of the 2-bit capacity of the digital
link. This is in stark contrast to the Type I channel, where each
bit of the relay capacity can increase the overall sum rate by
one bit in the high INR/SNR limit. The half bit upper bound
is in fact general, as shown in the following theorem.

Theorem 4: Let C(R0) denote the capacity region of the
Type II Gaussian Z-interference channel with a digital realy
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link of limited rate R0 from the interfered receiver to the
interference-free receiver as shown in Fig. 1(b). Let

Cθ
sum(R0) = max

(C1,C2)∈C(R0)
θC1 + (1 − θ)C2. (82)

Consider the weak interference regime, where INR2 ≤ SNR2.
For any R0 ≥ 0, a capacity upper bound for the Gaussian
Z-relay-interference channel is

Cθ
sum(R0) ≤ Cθ

sum(0) + (1 − θ)γ
(

INR2

1 + SNR2

)
. (83)

In particular, as R0 → ∞, the asymptotic sum capacity of the
Type II Gaussian Z-interference channel with a relay link is

γ

(
SNR1

1 + INR2

)
+ γ (1 + INR2 + SNR2) . (84)

Finally, the sum capacity of the Type II Gaussian Z-relay-
interference channel is upper bounded by the sum capacity of
the Gaussian Z-interference channel without a relay link plus
half a bit.

Proof: Clearly, the weighted sum capacity gain is a
nondecreasing function of R0. Thus, we focus on the case
of R0 = ∞, i.e. when Y2 has complete knowledge of Y1. The
proof starts with Fano’s inequality:

n(θR1 + (1 − θ)R2)
(a)

≤ θI(Xn
1 ; Y n

1 ) + (1 − θ)I(Xn
2 ; Y n

1 , Y n
2 ) + nεn

= θI(Xn
1 ; Y n

1 ) + (1 − θ)I(Xn
2 ; Y n

2 ) +
(1 − θ)I(Xn

2 ; Y n
1 |Y n

2 ) + nεn

(b)

≤ nCθ
sum(0) + (1 − θ)I(Xn

2 ; Y n
1 |Y n

2 ) + nεn

(c)

≤ nCθ
sum(0) + (1 − θ)I(Xn

2 ; Y n
1 |Xn

1 , Y n
2 ) + nεn(85)

where

(a) follows from Fano’s inequality;
(b) follows from the definition of Cθ

sum(0);
(c) follows from the fact that Xn

1 is independent of Xn
2

given Y n
2 , in which case

I(Xn
2 ; Y n

1 |Y n
2 ) = h(Xn

2 |Y n
2 ) − h(Xn

2 |Y n
1 , Y n

2 )
≤ h(Xn

2 |Y n
2 ) − h(Xn

2 |Xn
1 , Y n

1 , Y n
2 )

= h(Xn
2 |Xn

1 , Y n
2 ) − h(Xn

2 |Xn
1 , Y n

1 , Y n
2 )

= I(Xn
2 ; Y n

1 |Xn
1 , Y n

2 ). (86)

To complete the proof, we only need to show that
I(Xn

2 ; Y n
1 |Xn

1 , Y n
2 ) ≤ nγ

(
INR2

1+SNR2

)
.

Let Σ denote the covariance matrix of Xn
2 . Define σ2

1 =

N
|h21|2 , σ2

2 = N
|h22|2 . Let I be the n × n identity matrix. Then,

I(Xn
2 ; Y n

1 |Xn
1 , Y n

2 )
= h(Y n

1 |Xn
1 , Y n

2 ) − h(Y n
1 |Xn

1 , Xn
2 , Y n

2 )
= h(Y n

1 , Y n
2 |Xn

1 ) − h(Y n
2 |Xn

1 ) − h(Zn
1 )

= h

([
h11I
h22I

]
Xn

2 +
[

Zn
1

Zn
2

])
− h (h22X

n
2 + Zn

2 ) − h(Zn
1 )

(d)

≤ max
tr(Σ)≤nP2

1
2

log

∣∣∣∣ Σ + σ2
1I Σ

Σ Σ + σ2
2I

∣∣∣∣
|Σ + σ2

2I| · |σ2
1I|

= max
tr(Σ)≤nP2

1
2

log
|Σ + σ2

2I| · |Σ + σ2
1I − Σ(Σ + σ2

2I)−1Σ|
|Σ + σ2

2I| · |σ2
1I|

= max
tr(Σ)≤nP2

1
2

log
|(Σ−1 + (σ2

2)−1I)−1 + σ2
1I|

|σ2
1I|

= max
tr(Σ)≤nP2

1
2

log
|σ2

2I− σ2
2I(Σ + σ2

2I)
−1σ2

2I + σ2
1I|

|σ2
1I|

(e)
= nγ

(
INR2

1 + SNR2

)
(87)

where

(d) follows from the extremal entropy inequality of Liu
and Viswanath [18], which shows that a Gaussian
Xn

2 maximizes the entropy difference term immedi-
ately above (a detailed proof is given in Appendix
F);

(e) follows from the fact that the maximizing Σ is P2I,
which is shown explicitly in Appendix G;

and the intermediate steps make repeated use of the fact

that

∣∣∣∣ A B
C D

∣∣∣∣ = |D| · ∣∣A − BD−1C
∣∣ and the matrix in-

version lemma (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1. Combining (85), (87) and noting that
εn → 0 as n → ∞ give us the desired result (83).

Next, note that the sum capacity of the Type II Gaussian
Z-relay-interference channel with a relay link of capacity R0

can be expressed as 2C
1
2
sum(R0). Further, as given by (23),

2C
1
2
sum(0) = γ

(
SNR1

1 + INR2

)
+ γ(SNR2). (88)

Thus, by (83),

γ

(
SNR1

1 + INR2

)
+ γ(SNR2) + γ

(
INR2

1 + SNR2

)

= γ

(
SNR1

1 + INR2

)
+ γ (1 + INR2 + SNR2) (89)

is a sum capacity upper bound for 2C
1
2
sum(R0). By Theorem 3

and the computation earlier (i.e. (80)-(81)), we see that the
above upper bound is also asymptotically achievable when
R0 → ∞. This proves that (84) is the asymptotic sum capacity.

Finally, the half-bit bound on sum capacity follows from
the fact that γ

(
INR2

1+SNR2

)
≤ 1

2 when INR2 ≤ SNR2.

Note that the capacity region of the Gaussian Z-interference
without the relay link is not yet completely known, except
for the sum capacity point. Theorem 4 bounds the capacity
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Fig. 14. Gaussian interference channel with a relay link.

increase due to the relay link, without explicitly finding either
capacity regions.

The asymptotic sum capacity (84) is essentially the sum
capacity of a degraded Gaussian interference channel where
the inputs are X1 and X2, and outputs are Y1 and (Y1, Y2)
of a Gaussian Z-interference channel in the weak interference
regime. The capacity region for the general degraded interfer-
ence channel is still open.

IV. SUMMARY AND CONCLUDING REMARKS

This paper studies a class of Gaussian Z-interference chan-
nels with receiver cooperation, where a rate-limited digital link
is provided from one receiver to the other one. It is shown that,
when the relay link goes from the interference-free receiver
to the interfered receiver, it can significantly enlarge the
achievable rate region of a Gaussian Z-interference channel. In
this case, the interference-free receiver may decode then bin-
and-forward a part of the interference to the interfered receiver
for interference subtraction. This paper shows that, in the
strong interference regime, this partial interference forwarding
strategy is capacity achieving. In the weak interference regime,
the asymptotic sum capacity can be achieved with either
a partial-interference-forwarding or a quantize-and-forward
strategy in the high SNR/INR limit.

When the digital link is from the interfered receiver to the
interference-free receiver, the paper shows that a decode-and-
forward scheme is capacity achieving in the strong interference
regime. In the weak interference regime, an achievable rate
region is derived based a quantize-and-forward strategy. In
the moderately strong interference regime, a combination of
decode-and-forward and quantize-and-forward can be used.

It is interesting to note that in the weak interference regime,
when the relay link goes from the interference-free receiver to
the interfered receiver, the digital relay essentially achieves the
cut-set bound in the high SNR/INR limit—every bit of relay
capacity results in one bit increase in sum capacity. However,
when the direction of the relay is reversed, the sum capacity
increase is upper bounded by half a bit, regardless of the relay
link capacity. Thus, a relay link from the interference-free
receiver to the interfered receiver is much more efficient.

Our study of the Z-interference channel provides insights
into the achievable rates and relay strategies for the general
Gaussian interference with a relay link, as shown in Fig. 14.
In this more general setting, receiver 1 decodes both users’
common messages and observes a noisy version of user 2’s

:X1

X1

X2 Z ∼ N (0, N)

Y

R0

h1

h2

Ṽ

V

Fig. 15. Gaussian multiple-access channel with a digital relay link.

0

A

A′

B

B′

R1

R2

I(X1; Y )

I(X2; Y |X1)I(X2; Y )

I(X1; Y |X2)

I(X1; Y |X2) + R0

I(X1; Y ) + R0

Fig. 16. Capacity region of the multiple-access channel with a relay link.

private message. This more general setting can be treated as a
combination of the two types of Gaussian Z-relay-interference
channel considered in this paper. More specifically, receiver 1
may describe both common messages from user 1 and user 2
using bin indices, and describe user 2’s private message using
a quantize-and-forward strategy. The bin index for user 1’s
common message mitigates the interference at receiver 2; the
bin index for user 2’s common message and the quantization
of user 2’s private message enhances the decoding of user 2’s
message at receiver 2. In the weak interference regime, which
is of most practical interests, the binning of user 1’s common
message for interference subtraction is expected to be much
more efficient than the other two relay modes for enlarging
the overall achievable rate region.

APPENDIX

A. Gaussian Relay Multiple Access Channel

In this appendix, we prove the capacity of a Gaussian
multiple-access channel with a relay, where the relay knows
one of the inputs perfectly. The channel model is as shown in
Fig. 15.

Lemma 1: The capacity region of a Gaussian multiple-
access relay channel Y = h1X1 + h2X2 + Z , where Z ∼
N (0, N) and X1, X2 have power constraints P1 and P2, and
where a relay observes X1 perfectly and has a digital link to
Y with limited rate R0, is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(R1, R2)

∣∣∣∣∣∣∣∣∣∣∣∣

R1 ≤ γ

( |h1|2P1

N

)
+ R0

R2 ≤ γ

( |h2|2P2

N

)

R1 + R2 ≤ γ

( |h1|2P1 + |h2|2P2

N

)
+ R0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(90)
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Proof: We first prove the achievability. Without the relay
link, the capacity of the classic multiple-access channel is a
pentagon with corner points A and B, as depicted in Fig. 16{

RA
1 = I(X1; Y |X2)

RA
2 = I(X2; Y )

{
RB

1 = I(X1; Y )
RB

2 = I(X2; Y |X1).
(91)

Points A and B can be achieved by successive decoding with
orders 2 → 1 and 1 → 2 respectively.

Consider now the multiple-access channel with a relay,
where the relay observes X1 perfectly and where the relay
has a rate-limited digital link to Y . Consider first a decoding
order 2 → 1. The rate achievable by user 2 is still I(X2; Y ).
With X2 known at Y , consider now the operation of the relay.
Since the relay has perfect knowledge of X1, the channel from
X1 to Y is a degraded channel [9]. Thus, the following rate
pair is achievable:

RA′
1 = I(X1; Y |X2) + R0 = RA

1 + R0 (92)

RA′
2 = I(X2; Y ) = RA

2 . (93)

Similarly, for the decoding order 1 → 2, the following rate
pair is achievable:

RB′
1 = I(X1; Y ) + R0 = RB

1 + R0 (94)

RB′
2 = I(X2; Y |X1) = RB

2 . (95)

With time sharing, we arrive at the pentagon region with corner
points A′ and B′ in Fig. 16. Applying independent Gaussian
input distributions X1 ∼ N (0, P1) and X2 ∼ N (0, P2), we
prove the achievability of (90).

The converse follows from the cut-set upper bound [21]. Let
Ṽ n and V n be the input and the output of the digital relay
link, respectively, taking values in {1, 2, · · · , 2nR0}. Then,

nR1 ≤ I(Xn
1 , Ṽ n; Y n, V n|Xn

2 )
= I(Xn

1 ; Y n, V n|Xn
2 ) + I(Ṽ n; Y n, V n|Xn

1 , Xn
2 )

= I(Xn
1 ; Y n|Xn

2 ) + I(Xn
1 ; V n|Xn

2 , Y n) +
H(Ṽ n|Xn

1 , Xn
2 ) − H(Ṽ n|Xn

1 , Xn
2 , Y n, V n)

(a)
= I(Xn

1 ; Y n|Xn
2 ) + I(Xn

1 ; V n|Xn
2 , Y n)

(b)

≤ I(Xn
1 ; Y n|Xn

2 ) + nR0 (96)

where (a) comes from the fact that Ṽ n is a function of Xn
1 ,

so
H(Ṽ n|Xn

1 , Xn
2 ) = H(Ṽ n|Xn

1 , Xn
2 , Y n, V n), (97)

and (b) comes from the following inequality

I(Xn
1 ; V n|Xn

2 , Y n)
= H(V n|Xn

2 , Y n) − H(V n|Xn
1 , Xn

2 , Y n)
≤ H(V n|Xn

2 , Y n)
≤ nR0. (98)

Proceeding with smilar lines of reasoning, we can also prove
that

nR2 ≤ I(Xn
2 ; Y n|Xn

1 ) (99)

nR1 + nR2 ≤ I(Xn
1 , Xn

2 ; Y n) + nR0. (100)

The above constraints on R1, R2 and R1 + R2 are simultane-
ously maximized by i.i.d. Gaussian inputs Xn

1 distributed as

��
��
��
��

����

��
��
��
��

���� R1

R2

0
γ( SNR1

1+INR2
) γ(SNR1)

γ( INR2

1+SNR1
)

γ(SNR2) + R0
A

B

Fig. 17. The region defined by lines R1 = γ(SNR1), R2 = γ(SNR2)+R0

and the curve (101).

N (0, P1) and Xn
2 distributed as N (0, P2). The converse proof

is completed by evaluating the mutual information expression
in (96), (99) and (100) with Gaussian inputs.

B. Convexity of Achievable Rate Region (14)

This appendix shows that the region defined by R1 ≤
γ(SNR1), R2 ≤ γ(SNR2) + R0, and the curve⎧⎪⎪⎨
⎪⎪⎩

R1 = γ

(
SNR1

1 + βINR2

)

R2 = γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ R0

(101)
where 0 ≤ β ≤ 1, is convex when INR2 ≤ SNR2.

Note that, when β = 1 and β = 0, the curve defined by
(101) meets R2 = γ(SNR2) + R0 and R1 = γ(SNR1) at
points A and B, respectively, as shown in Fig. 17. Therefore,
to prove the convexity of the region, we only need to prove
that the curve (101) parameterized by β is concave.

First, we express β in terms of R1:

β =
1

INR2

(
SNR1

22R1 − 1
− 1
)

. (102)

Substituting this expression for β into the expression for R2

in (101), we obtain R2 as a function of R1:

R2 =
1
2

log
(−ν22R1 + λ

)
+ μ (103)

where

ν =
SNR2

INR2
− 1 (104)

λ =
SNR2

INR2
(1 + SNR1) − 1 (105)

μ = γ

(
1 + INR2

SNR1

)
+ R0. (106)

Note that when INR2 ≤ SNR2, ν ≥ 0 and λ > 0.
Observe that R1 is a monotonic decreasing function of β.

So, in the range 0 ≤ β ≤ 1, we have

γ

(
SNR1

1 + INR2

)
≤ R1 ≤ γ(SNR1). (107)

In this range of R1, it is easy to verify that −ν22R1 + λ > 0.
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Now, taking the first and second order derivatives of R2

with respect to R1 in (103), we have

R′
2 =

−ν22R1

−ν22R1 + λ
(108)

R′′
2 =

−2λν22R1

(−ν22R1 + λ)2
ln 2. (109)

Since ν ≥ 0, λ > 0, and −ν22R1 + λ > 0, we have R′
2 ≤ 0

and R′′
2 ≤ 0. As a result, the curve (101) parameterized by β

is concave. Therefore, in the weak interference regime where
INR2 ≤ SNR2, the rate region define by R1 ≤ γ(SNR1), R2 ≤
γ(SNR2) + R0 and (101) is convex.

C. Evaluation of Wyner-Ziv Rate (38)

In this appendix, we show that with independent Gaussian
inputs X1 ∼ N (0, P1) and X2 ∼ N (0, P2), and the Gaussian
quantization scheme (37), the achievable rate described by
(35), (34) and (36) is given by (38).

Clearly, with a Gaussian input X2 ∼ N (0, P2), R2 is given
by

R2 = I(X2; Y2)
= γ(SNR2). (110)

To fully utilize the digital link, we set Ŷ2 to be such that
I(Y2; Ŷ2|Y1) is equal to R0 in (36). Note that Ŷ2 = Y2 + e,
where Y2 and e are independent and e ∼ N (0, σ2). To find
σ2, note that

R0 = I(Y2; Ŷ2|Y1)
= h(Ŷ2|Y1) − h(Ŷ2|Y1, Y2)

= h(Y2 + e|Y1) − 1
2

log(2πeσ2)

=
1
2

log
(
2πe(σ2

Y2|Y1
+ σ2)

)
− 1

2
log(2πeσ2)

=
1
2

log

(
1 +

σ2
Y2|Y1

σ2

)
(111)

where σ2
Y2|Y1

, the conditional minimum mean-squared error of
Y2 given Y1, can be calculated as follows:

σ2
Y2|Y1

= N +
|h22|2P2(|h11|2P1 + N)
|h11|2P1 + |h21|2P2 + N

= N

(
1 +

SNR2(1 + SNR1)
1 + SNR1 + INR2

)
. (112)

Substituting the above σ2
Y2|Y1

into (111), we have

σ2 =
σ2

Y2|Y1

22R0 − 1

=
N

22R0 − 1

(
1 +

SNR2(1 + SNR1)
1 + SNR1 + INR2

)
. (113)

Now, we are ready to calculate R1. First, we evaluate

another term h(Ŷ2|Y1, X1):

h(Ŷ2|Y1, X1)
= h(h22X2 + Z2 + e|h11X1 + h21X2 + Z1, X1)
= h(h22X2 + Z2 + e|h21X2 + Z1)

=
1
2

log
(

2πe

(
σ2 + N +

|h22|2P2N

|h21|2P2 + N

))

=
1
2

log
(

2πe

(
σ2 + N

(
1 +

SNR2

1 + INR2

)))
(114)

where σ2 is given by (113).
Now, the rate of user 1 is given by

R1 = I(X1; Y1, Ŷ2)
= I(X1; Y1) + I(X1; Ŷ2|Y1)
= I(X1; Y1) + h(Ŷ2|Y1) − h(Ŷ2|Y1, X1). (115)

Clearly, with independent Gaussian inputs X1 ∼ N (0, P1)
and X2 ∼ N (0, P2),

I(X1; Y1) = γ

(
SNR1

1 + INR2

)
. (116)

Substituting (116), (114) and h(Ŷ2|Y1) from (111) into (115),
after some calculations, we obtain R1 in (38).

D. Convexity of Achievable Rate Region (73)

This appendix proves that the region defined by R1 ≤
γ(SNR1), R2 ≤ γ(SNR2) + δ(β, R0), and the curve⎧⎪⎪⎨
⎪⎪⎩

R1 ≤ γ

(
SNR1

1 + βINR2

)

R2 ≤ γ(βSNR2) + γ

(
βINR2

1 + SNR1 + βINR2

)
+ δ(β, R0)

(117)
where 0 ≤ β ≤ 1, is convex when INR2 ≤ SNR2.

We follow the same idea used in Appendix B to prove the
convexity of the above region. By Appendix B, we can rewrite
R2 as

R2 =
1
2

log
(−ν22R1 + λ

)
+ μ̃ + δ(β, R0) (118)

where μ̃ = μ−R0 is a constant, and ν, λ, μ are as defined in
Appendix B.

It is easy to verify that in the weak interference regime,
δ(β, R0) is concave in β, and β(R1), as denoted in (102), is
convex in R1. Combining this with the fact that δ(β, R0) is a
nondecreasing function of β shows that δ(β, R0) is a concave
function of R1. Adding δ(β, R0) with another concave (proved
in Appendix B) term 1

2 log
(−ν22R1 + λ

)
+ μ̃ gives us the

desired result that R2 is a concave function of R1.
Therefore, the region defined by R1 ≤ γ(SNR1), R2 ≤

γ(SNR2) + δ(β, R0) and (117) is convex.

E. Alternative Proof of (40)

In this appendix, we give an alternative proof of the
achievability region (40) for the Type II channel in the weak
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interference regime. Start with the same C1 as in (52), but fix
a decoding order so that{

S1 = I(X1; Y1|W2)
T2 = I(W2; Y1).

(119)

Next, we derive a new C2 with a fixed decoding order of
decoding W2 first, then U2, so that{

T2 = I(W2; Y2)
S2 = I(U2; Y2, Ŷ

′
1 |W2)

(120)

where Ŷ ′
1 is the result of quantizing

Ȳ ′
1 = h21U2 + Z1 (121)

with a Gaussian Wyner-Ziv quantizer

Ŷ ′
1 = Ȳ ′

1 + e, (122)

where e ∼ N (0, σ2) is independent of Ȳ1. Note that this
quantization scheme is different from the one described in
(53). In addition, since W2 is decoded first at Y2, it serves as
decoder side information in Wyner-Ziv coding.

To compute the variance of e, note that

R0 = I(Ŷ ′
1 ; Ȳ ′

1 |Y2, W2)
= h(Ŷ ′

1 |Y2, W2) − h(Ŷ ′
1 |Ȳ ′

1 , Y2, W2)

= h(Ȳ ′
1 + e|h22U2 + Z2) − 1

2
log(2πeσ2)

=
1
2

log
(
2πe(σ2

Ȳ1|h22U2+Z2
+ σ2)

)
− 1

2
log
(
2πeσ2

)
=

1
2

log

(
1 +

σ2
Ȳ1|h22U2+Z2

σ2

)
(123)

where σ2
Ȳ ′
1 |h22U2+Z2

, the conditional minimum mean-squared

error of Ȳ ′
1 given h22U2 + Z2, can be calculated as

σ2
Ȳ ′
1 |h22U2+Z2

= N +
β|h21|2P2N

β|h22|2P2 + N

= N

(
1 +

βINR2

1 + βSNR2

)
(124)

Substituting the above σ2
Ȳ ′
1 |h22U2+Z2

into (123), we have

σ2 =
σ2

Ȳ ′
1 |h22U2+Z2

22R0 − 1

=
N

22R0 − 1

(
1 +

βINR2

1 + βSNR2

)
(125)

Now, we evaluate the overall achievable rate region by
noting that

R1 = S1 = I(X1; Y1|W2) = γ

(
SNR1

1 + βINR2

)
(126)

and since I(W2; Y1) ≤ I(W2, Y2) when SNR2 ≥ INR2,

R2 = T2 + S2

= I(W2; Y1) + I(U2; Y2, Ŷ
′
1 |W2)

= I(W2; Y1) + I(U2; Y2|W2) + I(U2; Ŷ ′
1 |Y2, W2)

= γ

(
βINR2

1 + SNR1 + βINR2

)
+ γ(βSNR2)

+I(U2; Ŷ ′
1 |Y2, W2). (127)

X2 X2

Z1

Z2 Z2

Y1

Y2 Y2
h22h22

h21h21

Z̄1 = κZ1

Ȳ1

Fig. 18. Gaussian X2 maximizes the mutual information difference
I(X2; Y1, Y2) − I(X2; Ȳ1, Y2) for any κ, and in particular for κ → ∞.

To compute the last term in the above,

I(U2; Ŷ ′
1 |Y2, W2) =

1
2

log

(
σ2

Ŷ ′
1 |h21U2+Z2

σ2
Ŷ ′
1 |U2

)

= γ

(
βINR2

(1 + βSNR2)(1 + σ2

N )

)
(128)

where the computation of σ2
Ŷ ′
1 |h21U2+Z2

is similar to (124).

Finally, substituting (125) into the above, we obtain

R2 = γ

(
βINR2

1 + SNR1 + βINR2

)
+ γ(βSNR2)

+ γ

(
β(22R0 − 1)INR2

22R0(1 + βSNR2) + βINR2

)
(129)

which is exactly (40).

F. Proof of Step (d) in (87)

In this appendix, we use the extremal entropy inequality
of Liu and Viswanath [18] to show that a Gaussian Xn

2

maximizes the following term

h

([
h11I
h22I

]
Xn

2 +
[

Zn
1

Zn
2

])
− h (h22X

n
2 + Zn

2 ) − h(Zn
1 ).

(130)
where Zn

1 and Zn
2 are independent.

Redefine Y1 = X2 +Z1, Y2 = X2 +Z2. The above entropy
difference is essentially

I(Xn
2 ; Y n

1 , Y n
2 ) − I(Xn

2 ; Y n
2 ) (131)

which is the difference in mutual information for a Gaussian
vector channel between when receiver knows both Y1 and Y2

and when receiver knows only Y2.
Gaussian input maximizes individual Gaussian vector chan-

nel mutual information. Does Gaussian input also maximize
the mutual information gain due to an independent “second
look”? We show this is so using a limiting argument.

Let Z̄1 = κZ1 and Ȳ1 = X2 + Z̄1 as shown in Fig. 18.
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Then,

I(Xn
2 ; Y n

1 , Y n
2 ) − I(Xn

2 ; Y n
2 )

= lim
κ→∞ I(Xn

2 ; Y n
1 , Y n

2 ) − I(Xn
2 ; Ȳ n

1 , Y n
2 )

= lim
κ→∞ h(Y n

1 , Y n
2 ) − h(Ȳ n

1 , Y n
2 ) − h(Zn

1 ) + h(Z̄n
1 )

= lim
κ→∞ h

([
h11I
h22I

]
Xn

2 +
[

Zn
1

Zn
2

])

−h

([
h11I
h22I

]
Xn

2 +
[

Z̄n
1

Zn
2

])
−h(Zn

1 ) + h(Z̄n
1 ) (132)

We now apply the extremal entropy inequality of Liu and
Viswanath [18] to the first two terms in the above to conclude
that under a trace constraint tr(Σ) ≤ nP2, the maximizing[

h11I
h22I

]
Xn

2 must be Gaussian, hence the maximizing Xn
2

must be Gaussian. Consequently, with the entropy expressions
evaluated under Gaussian distribution,

I(Xn
2 ; Y n

1 , Y n
2 ) − I(Xn

2 ; Y n
2 )

≤ lim
κ→∞ max

tr(Σ)≤nP2

1
2

log

∣∣∣∣ Σ + σ2
1I Σ

Σ Σ + σ2
2I

∣∣∣∣ · |κ2σ2
1I|∣∣∣∣ Σ + κ2σ2

1I Σ
Σ Σ + σ2

2I

∣∣∣∣ · |σ2
1I|

= max
tr(Σ)≤nP2

1
2

log

∣∣∣∣ Σ + σ2
1I Σ

Σ Σ + σ2
2I

∣∣∣∣
|Σ + σ2

2I| · |σ2
1I|

+

lim
κ→∞ max

tr(Σ)≤nP2

1
2

log
|κ2σ2

1I|
|Σ + κ2σ2

1I− Σ(Σ + σ2
2I)−1Σ|

≤ max
tr(Σ)≤nP2

1
2

log

∣∣∣∣ Σ + σ2
1I Σ

Σ Σ + σ2
2I

∣∣∣∣
|Σ + σ2

2I| · |σ2
1I|

+

lim
κ→∞ max

tr(Σ)≤nP2

1
2

log
|κ2σ2

1I|
|Σ + κ2σ2

1I|
(133)

where we again used

∣∣∣∣ A B
C D

∣∣∣∣ = |D| · ∣∣A − BD−1C
∣∣. The

second term above is clearly zero as κ → ∞. This proves step
(d) of (87).

G. Maximization in Step (e) of (87)

In this appendix, we explicitly solve

max
tr(Σ)≤nP2

1
2

log
|σ2

2I − σ2
2I(Σ + σ2

2I)
−1σ2

2I + σ2
1I|

|σ2
1I|

(134)

where σ2
1 = N

|h21|2 , σ2
2 = N

|h22|2 .
Over the set of semidefinite matrices, the matrix function

above is a composition of a concave function with a con-
cave and increasing function, and is therefore concave in Σ.
The optimization problem satisfies the Slater’s condition; its
Karush-Kuhn-Tucker (KKT) condition is therefore necessary
and sufficient for optimality. Write down the Lagrangian of
the optimization problem

1
2

log
|σ2

2I − σ2
2I(Σ + σ2

2I)
−1σ2

2I + σ2
1I|

|σ2
1I|

− λ(tr(Σ) − nP2)

(135)

Taking the derivative of the above matrix function with respect
to Σ and setting it to zero, we obtain

1
2
σ2

2(Σ + σ2
2I)

−1(σ2
2I − σ2

2I(Σ + σ2
2I)

−1σ2
2I + σ2

1I)
−1

(Σ + σ2
2I)

−1σ2
2 = λI. (136)

It is easy to verify that a diagonal Σ = P2I along with some
positive λ satisfies the above. Therefore, the optimal Σ is P2I.
An evaluation of (134) with a diagonal Σ = P2I then yields
its maximum value as nγ

(
INR2

1+SNR2

)
.
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