Interpreting Body Sensor Networks (BSNs) for Sensor Abnormalities

Haiyan Xu
Ali Tawfiq
Project ID: 2009153
Supervisor: Prof. K.N. Plataniotis
Administrator: Prof. Hans Kunov

Why Body Sensor Networks?
- BSN: A network of bio-sensors
 - Wearable/implantable
 - Wireless communication
 - Positioned strategically on the body
- Applications
 - Health monitoring, Disease diagnosis
 - Field agent monitoring (fire fighters, rescuers, soldiers)
- Challenges
 - Reliable monitoring
 - Novel approach for signal quality validation

Design Objective

Determine system failure based on comparison of heart cycles from various cardiovascular signals.

Main Tasks and Progress
- Device Acquisition (Completed)
 - ECG Unit, Blood Pressure Unit (replaced by third ECG device), SpO2 Unit
- Signal Processing (Completed)
 - Peak extraction for ECG, SpO2
 - P-P Period comparison
 - Correlation analysis
- Define Detection Criteria (In progress)
 - Multiple Recordings from various subjects at different times
- GUI Interface (In progress)

System Overview

Signals Validation Scheme

* Threshold is the maximum allowed p2p variation
* It is defined through system training and iteratively every fixed amount of time
Main components of an ECG heart beat

- ECG reflects the cardiac electrical activity over time
- Typical ECG Heartbeat consists of:
 - P-wave, Atrial Contraction
 - QRS complex, Ventricle Contraction
 - T-wave, re-polarization of Ventricles
- Recordings with a set of electrodes on the body surface.

ECG as Vital Sign

ECG R Peak Detection

- ECG signals are noisy
 - Filtering requirements
 - Complex Peak Detection Algorithm
- Energy concentrated around R-peaks
 - Higher Amplitude
- Output: RR interval in seconds

The Saturation of Peripheral Oxygen (Sp\textsubscript{o2}) Sensor and Corresponding Waveform

- Percentage of arterial hemoglobin in the oxyhemoglobin configuration
- Non-invasive (blood sample not required)
- Continuous periodic waveform
- 75 Hz sampling rate

Peak Detection Algorithm for the Sp\textsubscript{o2} Signal

- Iterative Local Maxima algorithm
 - Scan window iterates and extracts the index and amplitude of peak
- Output:
 - P-P periods
 - Figure with original waveform and detected peaks

Sampling and Validation Methodology

- Verify the assumption that there exists a certain correlation between the Peak-to-Peak periods of the different Cardiovascular signals.
- Challenges
 - Transmission delay
 - Hidalgo ECG (Chest), Vernier ECG (Arm), and Sp\textsubscript{o2} (Finger)
 - Sampling Frequencies
 - Hidalgo ECG (256 Hz), Vernier ECG (200 Hz), Sp\textsubscript{o2} (75 Hz)
 - Up/down sampling
- Collect simultaneous data offline from all three devices
- MATLAB function
 - Period estimation
 - Hidalgo data: Down sampling to 200 Hz
 - Sp\textsubscript{o2} data: Up sampling to 200 Hz
Results of Testing and Validation

- Pair wise comparison of P–P Periods via
 - Mean/Mean of Difference
 - Standard Deviation/Standard Deviation of Difference
 - Minimum and Maximum Value
 - Threshold
 - Percentage Error

\[
\% \text{ Error} = \frac{\text{Avg(Mean of Difference)}}{\text{Signal Mean}} \times 100\%
\]

<table>
<thead>
<tr>
<th>Mean of Difference ((\Delta P))</th>
<th>Percentage Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{SpO2}}) 0</td>
<td>0.765%</td>
</tr>
<tr>
<td>(P_{\text{Vernier}}) 0</td>
<td>0.537%</td>
</tr>
<tr>
<td>(P_{\text{Hidalgo}}) 0</td>
<td>0.537%</td>
</tr>
</tbody>
</table>

What is Next?

- Decision Making
 - Rules for Failure Detection
 - Possible Failure Modes
- Testing Failure Modes
- GUI Interface
 - Interactive Display to User