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Chapter 5: Frequency Domain Analysis of LTI Systems

Discrete-Time Signals and Systems

Reference:

Sections 5.1, 5.2 - 5.5 of

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications, 4th edition, 2007.
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

I Recall for an LTI system: y(n) = h(n) ∗ x(n).

I Suppose we inject a complex exponential into the LTI system:

y(n) =
∞∑

k=−∞

h(k)x(n − k)

x(n) = Ae jωn

I Note: we consider x(n) to be comprised of a pure frequency of
ω rad/s
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

∴ y(n) =
∞∑

k=−∞

h(k)Ae jω(n−k)

=
∞∑

k=−∞

h(k)Ae jωn · e−jωk

= Ae jωn ·

[
∞∑

k=−∞

h(k)e−jωk

]
︸ ︷︷ ︸
≡H(ω)=DTFT{h(n)}

= Ae jωnH(ω)

I Thus, y(n) = H(ω)x(n) when x(n) is a pure frequency.
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

The Frequency Response Function

y(n) = H(ω)x(n)

output = scaled input

A · v = λ · v
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

LTI System Eigenfunction

I Eigenfunction of a system:
I an input signal that produces an output that differs from the

input by a constant multiplicative factor
I multiplicative factor is called the eigenvalue

I Therefore, a signal of the form Ae jωn is an eigenfunction of an
LTI system.
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

LTI System Eigenfunction

I Implications:
I An LTI system can only change the amplitude and phase of a

sinusoidal signal.

I An LTI system with inputs comprised of frequencies from set Ω0

cannot produce an output signal with frequencies in the set Ωc
0

(i.e., the complement set of Ω0)
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Magnitude and Phase of H(ω)

H(ω) = |H(ω)|e jΘ(ω)

|H(ω)| ≡ system gain for freq ω

∠H(ω) = Θ(ω) ≡ phase shift for freq ω
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Example:

Determine the magnitude and phase of H(ω) for the three-point
moving average (MA) system

y(n) =
1

3
[x(n + 1) + x(n) + x(n − 1)]

By inspection, h(n) = 1
3
δ(n + 1) + 1

3
δ(n) + 1

3
δ(n − 1). Therefore,

H(ω) =
∞∑

n=−∞

h(n)e−jωn =
1∑

n=−1

1

3
e−jωn

=
1

3
[e jω + 1 + e−jω] =

1

3
(1 + 2 cos(ω))

Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 9 / 39

Chapter 5: Frequency Domain Analysis of LTI Systems 5.1 Frequency-Domain Characteristics of LTI Systems

Example:

What is the phase of H(ω) = 1
3
(1 + 2 cos(ω))?

|H(ω)| =
1

3
|1 + 2 cos(ω)|

Θ(ω) =

{
0 0 ≤ ω ≤ 2π

3

π 2π
3
≤ ω < π

See Figure 5.1.1 of text .
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.2 Frequency Response of LTI Systems

Frequency Response of LTI Systems

z-Domain ω-Domain

H(z)
z=e jω
=⇒ H(ω)

system function
z=e jω
=⇒ frequency response

Y (z) = X (z)H(z)
z=e jω
=⇒ Y (ω) = X (ω)H(ω)
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.2 Frequency Response of LTI Systems

Frequency Response of LTI Systems

I If H(z) converges on the unit circle, then we can obtain the
frequency response by letting z = e jω:

H(ω) = H(z)|z=e jωn =
∞∑

n=−∞

h(n)e−jωn

=

∑M
k=0 bke

−jωk

1 +
∑N

k=1 ake
−jωk

for rational system functions.
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

LTI Systems as Frequency-Selective Filters

I Filter: device that discriminates, according to some attribute of
the input, what passes through it

I For LTI systems, given Y (ω) = X (ω)H(ω)
I H(ω) acts as a kind of weighting function or spectral shaping

function of the different frequency components of the signal

LTI system⇐⇒ Filter

Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI Systems 13 / 39

Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Ideal Filters

I Classification:
I lowpass
I highpass
I bandpass
I bandstop
I allpass

See Figure 5.4.1 of text .
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Ideal Filters

I Common characteristics:
I unity (flat) frequency response magnitude in passband and zero

frequency response in stopband

I linear phase; for constants C and n0

H(ω) =

{
Ce−jωn0 ω1 < |ω| < ω2

0 otherwise
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.4 LTI Systems as Frequency Selective Filters

Ideal Filters

I Suppose H(ω) = Ce−jωn0 for all ω:

δ(n)
F←→ 1

δ(n − n0)
F←→ 1 · e−jωn0

C · δ(n − n0)
F←→ C · 1 · e−jωn0 = Ce−jωn0

I Therefore, h(n) = Cδ(n − n0) and:

y(n) = x(n) ∗ h(n) = x(n) ∗ Cδ(n − n0) = Cx(n − n0)
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Ideal Filters

I Therefore for ideal linear phase filters:

H(ω) =

{
Ce−jωn0 ω1 < |ω| < ω2

0 otherwise

I signal components in stopband are annihilated
I signal components in passband are shifted (and scaled by

passband gain which is unity)
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Phase versus Magnitude

What’s more important?
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Why Invert?

I There is a fundamental necessity in engineering applications to
undo the unwanted processing of a signal.

I reverse intersymbol interference in data symbols in
telecommunications applications to improve error rate; called
equalization

I correct blurring effects in biomedical imaging applications for
more accurate diagnosis; called restoration/enhancement

I increase signal resolution in reflection seismology for improved
geologic interpretation; called deconvolution
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Invertibility of Systems

I Invertible system: there is a one-to-one correspondence between
its input and output signals

I the one-to-one nature allows the process of reversing the
transformation between input and output; suppose

y(n) = T [x(n)] where T is one-to-one

w(n) = T −1[y(n)] = T −1{T [x(n)]} = x(n)

Direct
System

Identity System

Inverse
System
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Invertibility of LTI Systems

Direct
System

Identity System

Impluse response = 

Inverse
System

Direct
System

Inverse
System
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Chapter 5: Frequency Domain Analysis of LTI Systems 5.5 Inverse Systems and Deconvolution

Invertibility of LTI Systems

I Therefore,
h(n) ∗ hI (n) = δ(n)

I For a given h(n), how do we find hI (n)?

I Consider the z−domain

H(z)HI (z) = 1

HI (z) =
1

H(z)
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Invertibility of Rational LTI Systems

I Suppose, H(z) is rational:

H(z) =
A(z)

B(z)

HI (z) =
B(z)

A(z)

poles of H(z) = zeros of HI (z)

zeros of H(z) = poles of HI (z)
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Example

Determine the inverse system of the system with impulse response
h(n) = ( 1

2
)nu(n).
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Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 (cos(ω0n))u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 (sin(ω0n))u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 (an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 (an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|
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Example

Determine the inverse system of the system with impulse response
h(n) = ( 1

2
)nu(n).

I H(z) = 1
1− 1

2
z−1 , ROC: |z | > 1

2
; note: direct system is causal +

stable.

I Therefore,

HI (z) =
1

H(z)
= 1− 1

2
z−1

I By inspection,

hI (n) = δ(n)− 1

2
δ(n − 1)

I Is the inverse system stable? causal?
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Another Example

Determine the inverse system of the system with impulse response
h(n) = δ(n)− 1

2
δ(n − 1).

H(z) =
∞∑

n=−∞

h(n)z−n =
∞∑

n=−∞

[δ(n)− 1

2
δ(n − 1)]z−n

= 1− 1

2
z−1

HI (z) =
1

1− 1
2
z−1
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Common Transform Pairs

Signal, x(n) z-Transform, X (z) ROC

1 δ(n) 1 All z
2 u(n) 1

1−z−1 |z | > 1

3 anu(n) 1
1−az−1 |z | > |a|

4 nanu(n) az−1

(1−az−1)2 |z | > |a|
5 −anu(−n − 1) 1

1−az−1 |z | < |a|
6 −nanu(−n − 1) az−1

(1−az−1)2 |z | < |a|
7 (cos(ω0n))u(n) 1−z−1 cosω0

1−2z−1 cosω0+z−2 |z | > 1

8 (sin(ω0n))u(n) z−1 sinω0
1−2z−1 cosω0+z−2 |z | > 1

9 (an cos(ω0n)u(n) 1−az−1 cosω0
1−2az−1 cosω0+a2z−2 |z | > |a|

10 (an sin(ω0n)u(n) 1−az−1 sinω0
1−2az−1 cosω0+a2z−2 |z | > |a|
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Another Example

There are two possibilities for inverses:

I Causal + stable inverse:

hI (n) =

(
1

2

)n

u(n)

I Anticausal + unstable inverse:

hI (n) = −
(

1

2

)n

u(−n − 1)
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Homomorphic Deconvolution

I The complex cepstrum of a signal x(n) is given by:

cx(n) = Z−1{ln(Z{x(n)}} = Z−1{ln(X (z))} = Z−1{Cx(z)}

x(n)
Z←→ X (z)

cepstrum ≡ cx(n)
Z←→ Cx(z) = ln(X (z))

I We say, cx(n) is produced via a homomorphic transform of x(n).
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Homomorphic Deconvolution

Y (z) = X (z)H(z)

Cy (z) = lnY (z)

= lnX (z) + lnH(z)

= Cx(z) + Ch(z)

Z−1{Cy (z)} = Z−1{Cx(z)}+ Z−1{Ch(z)}
cy (n) = cx(n) + ch(n)

Therefore,

convolution in time-domain ←→ addition in cepstral domain
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Homomorphic Deconvolution

I In many applications, the characteristics of cx(n) and ch(n) are
sufficiently distinct that temporal windows can be used to
separate them:

ĉh(n) = cy (n)ŵlp(n)

ĉx(n) = cy (n)ŵhp(n)

where:

ŵlp(n) =

{
1 |n| ≤ N1

0 |n| > N1

ŵhp(n) =

{
0 |n| ≤ N1

1 |n| > N1
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Homomorphic Deconvolution

I Obtaining the inverse homomorphic transforms of ch(n) and
cx(n) give estimates of h(n) and x(n), respectively.

�
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