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Multiple Input Multiple Output Systems

MIMO Systems: the use of an antenna array at the receiver
(Multiple Output) and/or the transmitter (Multiple Input) in
wireless communications

Outline of this Course:

■ Basic digital and wireless communications

■ Diversity on Receive

■ Diversity on Transmit

■ Multiplexing and data rate

Detailed notes available at
http://www.comm.utoronto.ca/˜ rsadve/teaching.html
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I like this research area because...

MIMO Systems bring
together....

■ Antenna array theory

■ Probability theory

■ Linear algebra

■ Optimization

■ Digital communications

....and it is useful!

(borrowed from The Economist,
April 28th - May 4th 2007 )
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A Digital Communication System
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■ The noise term, n(t), is usually modelled as additive, white,
Gaussian noise (AWGN)
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Performance Measure : BER

■ Performance of the system is generally measured via the bit
error rate (BER)
◆ BER is a function of signal-to-noise ratio (SNR)

SNR =
E{|s(t)|2}
E{|n(t)|2}

where E{·} is the expectation operator.

■ Binary Phase Shift Keying (BPSK): bit = 0 → symbol = 1, bit
= 1 → symbol = -1

■ For an AWGN channel and BPSK

BER = Q
(√

2SNR
)

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt

◆ Q(x) < (1/2)e−x2/2, i.e., for an AWGN channel BER falls
off exponentially with SNR.
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Basic Information Theory

■ Channels are characterized by channel capacity C

■ Shannon says: Given a channel with capacity C, one can
find a coding scheme to transmit at a data rate R < C
without error. Furthermore, one cannot transmit without error
at a data rate R > C.
◆ C acts as the effective speed limit on the channel

■ R is generally measured in bits per channel use.

■ For an AWGN channel (with complex inputs and outputs)

C = log2 (1 + SNR) (bits)

■ Note that C is a non-linear function of SNR

◆ At low SNR, C ≃ SNR
◆ At high SNR C ≃ log2(SNR)
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A Wireless Communication System
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A wireless communication system is fundamentally limited by
the random channel, i.e., fading.
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Fading Channels

Due to the unknown location of the mobile station and the
unknown medium between the transmitter and receiver, the
wireless channel is best characterized as random.

■ Fading has three components:

Overall fading = (Distance Attenuation) × (Large Scale
Fading) × (Small Scale Fading)

■ Distance attenuation: fall off in power with distance

◆ In line-of-sight conditions, received power ∝ 1/d2 (where
d is the distance between transmitter and receiver)

◆ In non line-of-sight conditions, received power ∝ 1/dn,
where n is the distance attenuation parameter

■ 1.5 < n < 4.5.
■ In some scenarios n < 2 due to tunnelling
■ n large in urban areas, ∼ 4.5
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Fading Channels (cont...)

■ Large Scale Fading: Occurs due to the attenuation each time
a signal passes through an object

Large Scale Fading = 10−(x1+x2+...) = 10−x

where xi is the attenuation due to object # i.

■ By the Cental Limit Theorem, x = (x1 + x2 + . . .) is a
Gaussian random variable

⇒ large scale fading can be modelled as log-normal, i.e., the
log of the fading term is distributed normal:

Large Scale Fading = 10−x;

x ∼ N (0, σ2
h1)

■ Large scale fading varies slowly, remaining approximately
constant over hundreds of wavelengths
◆ There is not much one can do about large scale fading or

distance attenuation, just power control
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Small Scale Fading
■ Occurs due to multipath propagation

◆ Each signal arrives over many many paths

Transmitter Receiver

■ Each path has slightly different length ⇒ slightly different
time of propagation
⇒ with different phase that is effectively random
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Small Scale Fading (cont...)
■ Total received signal is the sum over all paths

Received Signal = Transmitted Signal × Distance Attenuation

× Large Scale Fading × (h1 + h2 . . .)

hi = αie
jφi ; φi is random

■ If all αi are approximately the same (Rayleigh fading),

Small Scale Fading = h = (h1 + h2 + . . .)

h ∼ CN (0, σ2
h)

■ If one of the components is dominant (Rician fading)

h ∼ CN (µ, σ2
h)

■ CN (µ, σ2
h) represents the complex Gaussian distribution with

mean µ and variance σ2
h.

◆ We will focus on Rayleigh fading, i.e., h ∼ CN (0, σ2
h)

◆ Note: Rayleigh fading is just one of many fading models
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Small Scale Fading (cont...)
■ Frequency flat versus frequency selective fading:

◆ Symbol period: Ts; Channel time spread: Tc

T 2Ts
s

h(t)

T
c

T 2Ts
s

h(t)

T
c

Modelled As

■ Channel modelled as a train of impulses
◆ If Tc < Ts, h(t) = αδ(t) ⇒ H(jω) = constant (Frequency

flat fading)

◆ If Tc > Ts, h(t) =
∑

ℓ αℓδ(t − ℓTs) ⇒ H(jω) 6= constant
(Frequency selective fading)

■ Note: α ∼ CN (0, σ2
h)
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Small Scale Fading (cont...)
■ If the mobile is moving with radial velocity v, the channel

changes as a function of time

◆ Rate of change = Doppler frequency (fd = v/λ)

■ Symbol rate = fs = 1/Ts

◆ If fd ≪ fs, channel is effectively constant over several
symbols (slow fading)

◆ If fd > fs, channel changes within a symbol period (fast
fading)

■ We shall focus on slow, flat, fading
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In summary...

■ Fading has three components
◆ Distance attenuation ∝ 1/dn

◆ Large scale fading; modelled as log-normal; constant over
hundreds of λ

◆ Small scale fading; modelled as Rayleigh, i.e., complex
normal; fluctuates within fraction of λ

■ Assume power control for distance attenuation and large
scale fading.
◆ This is all that can be done!
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Data Model

■ With flat, slow fading:

x = hs + n

■ x: received signal, h: channel, s: transmitted complex
symbol, n: noise

◆ h ∼ CN (0, σ2
h)

◆ Instantaneous channel power: |h|2 ∼ (1/σ2
h)e−|h|2/σ2

h

(exponential)
■ channel is often in “bad shape”

◆ Note: σ2
h = E{|h|2} = average power in channel

■ Set σ2
h = 1 for convenience (channel does not

“introduce” power)



Introduction and Overview

Basic Digital Communications

Basic Wireless Communications

● Fading Channels

● Small Scale Fading

● Rayleigh/Rician Fading

● Flat/Selective Fading

● Slow/Flat fading

● Summary

● SISO Data Model

● Channel Fluctuation

● Error Rate

● Outage Probability

Receive Diversity

Transmit Diversity

MIMO Information Theory

Course Summary

END

Waveform Diversity and Design Conference, Slide #16

Impact of Fading

Average SNR = E{|h|2}E{|s|2}
σ2

= σ2
hΓ = Γ

γ = Instantaneous SNR = |h|2 E{|s|2}
σ2

= |h|2Γ; γ ∼ 1

Γ
e−γ/Γ

■ Note that the average SNR has not changed

■ The fluctuation in power due to the fading seriously impacts
on the performance of a wireless system
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Bit Error Rate

■ Without fading, BER = Q(
√

2Γ) ≃ exp(−Γ)

◆ Exponential drop off with SNR
■ With fading, instantaneous SNR = γ, i.e., instantaneous BER

= Q(
√

2γ)

⇒ Average BER = Eγ{Q(
√

2γ}

=

∫ ∞

0

Q(
√

2γ)
1

Γ
e−γ/Γdγ

=
1

2

(

1 −
√

Γ

1 + Γ

)

◆ At high SNR (Γ → ∞),

BER ∝ 1

Γ
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Bit Error Rate: Example
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Comparing error rates with and without fading

Without fading
With Rayleigh fading

Note: In the case with fading, the BER v/s SNR plot (in log-log
format appears as a straight line)
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Outage Probability

■ If channel is known, capacity: C = log2

(

1 + |h|2Γ
)

■ If channel is unknown, true capacity = 0!!
◆ One cannot guarantee any data rate

◆ Therefore, define outage probability for a rate R

Pout = P (C < R)

P
(

log2

(

1 + |h|2Γ
)

< R
)

= P

(

|h|2 <
2R − 1

Γ

)

= 1 − exp

(

−2R − 1

Γ

)

◆ IMPORTANT: as average SNR gets large (Γ → ∞),

exp

(

−2R − 1

Γ

)

≃ 1 − 2R − 1

Γ

⇒ Pout ∝ 1

Γ
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Outage Probability: Alternate Definition
■ Note: Choosing a target rate R is equivalent to choosing a

SNR threshold, γs

■ Alternate definition of outage

Pout = P [γ < γs]

=

∫ γs

0

1

Γ
e−γ/Γdγ

= 1 − e−γs/Γ

■ Again, as (Γ → ∞)

Pout ∝
1

Γ
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So, what are we going to do about this?

Use multiple antennas!

which provide diversity
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Introduction to Receive Diversity

SIMO : Single antenna at the transmitter, multiple at the
receiver

Transmitter

Receiver 1

Receiver 2

Receiver N

h
0

h
1

h
N

■ If for a single receiver, Pout = 0.1, for two receivers
Pout = 0.01

◆ ⇒ exponential gains in error rate with linear increase in
number of antennas

◆ fundamental assumption: the error events are
independent, i.e, the channels are independent

■ Key: provide the receiver with multiple independent copies
of the message
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Diversity Basics
■ Assume for now that the channels are independent and

identically distributed (i.i.d.)

◆ We will deal with the issue of correlation later
◆ Channel to nth receive element = hn, i.e., hn is assumed

independent of hm for n 6= m

■ Signal to noise ratios are also i.i.d.: γn is independent of γm,
n 6= m. Also,

γn ∼ 1

Γ
e−γn/Γ

◆ Note: every channel has the same average SNR
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Basics (cont...)

Output Signal

Σ
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■ This appears to be beamforming! (for a single user!).

■ Write the received signal as a vector

x = hs + n

h = [h1, h2, . . . hN ]
T

◆ The output signal is given by:

y =
N
∑

n=1

w∗
nxn = wHx = wHhs + wHn
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Receive Diversity Techniques

■ The weight vector is w = [w1, w2, . . . wN ]
T

■ Key: how are these weights chosen?

Receive Diversity Techniques:

■ Selection Combining

■ Maximal Ratio Combining (MRC)

■ Equal Gain Combining (EGC)
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Selection Combining
■ Choose, for further processing, the receive element with the

highest SNR

wk =

{

1 γk = maxn{γn}
0 otherwise

■ The output SNR is therefore the maximum of the receive
elements

Output SNR = γout = max
n

{γn}

■ Note: channel phase information not required in the
selection process

■ This is the simplest diversity scheme
◆ Seems to “waste” (N − 1) receivers
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Analyzing Selection Diversity
■ Outage probability : the output SNR is below threshold γs if

all receive elements have SNR below γs:

Pout = P [γout < γs]

= P [γ1, γ2, . . . γN < γs]

=
N
∏

n=1

P [γn < γs]

⇒ Pout =
[

1 − e−γs/Γ
]N

◆ Pout =
[

1 − e−γs/Γ
]

for N = 1, i.e.,exponential gains in
outage probability

■ Note: at high SNR, as Γ → ∞

Pout ∝
(

1

Γ

)N
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Performance: Outage Probability versus SNR
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Performance: Outage Probability versus γs/Γ
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Performance: Bit Error Rate
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Analysis of Selection Combining (cont...)

Q: Are the gains in selection due to gains in SNR?

A: In fact, no!!

SNR analysis:

■ Note, Pout = P (γout < γs) is also the cumulative density
function (CDF) of output SNR

◆ ⇒ the probability density function, f(γout) = dPout/dγout

f(γout) =
N

Γ
e−γout/Γ

[

1 − e−γout/Γ
]N−1

Also, E {γout} =

∫ ∞

0

γoutf(γout)dγout
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SNR Analysis (cont...)

⇒ E {γout} = Γ

N
∑

n=1

1

n
,

≃ Γ

(

C + lnN +
1

2N

)

,

■ The gain in SNR is only ln(N)!!!
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SNR Analysis (cont...)

Q: So, where are the gains coming from?

A: Reduced variation in the channel
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Maximal Ratio Combining
■ Selection is simple, but wastes (N − 1) receive elements

■ Maximal Ratio Combining maximizes output SNR γout

x = hs + n

h = [h1, h2, . . . hN ]T

Output Signal = y =
N
∑

n=1

w∗
nxn = wHhs + wHn

Output SNR = γout =

∣

∣wHh
∣

∣

2
E{|s|2}

E
{

|wHn|2
}

=

∣

∣wHh
∣

∣

2
E{|s|2}

σ2||w||2

MRC: wMRC = max
w

[γout] = max
w

[
∣

∣wHh
∣

∣

2

σ2||w||2

]
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Maximal Ratio Combing (cont...)
■ Using Cauchy-Schwarz inequality

w ∝ h

■ Choose w = h,

Output Signal = y =
(

|h1|2 + |h2|2 + . . . |hN |2
)

s + noise

=

(

N
∑

n=1

|hn|2
)

s + noise

Output SNR = γout =
N
∑

n=1

E{|s|2}|hn|2
σ2

=
N
∑

n=1

γn

■ i.e., the output SNR is the sum of the SNR over all receivers

■ PDF of output SNR:

f(γout) = f(γ1) ⋆ f(γ2) ⋆ · · · f(γN ) =
1

(N − 1)!

γN−1
out

ΓN
e−γout/Γ,
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MRC Results
■ Average SNR

γout =
N
∑

n=1

γn ⇒ E{γout} = NΓ

■ Outage probability

Pout = P [γout < γs] = 1 − e−γs/Γ
N−1
∑

n=0

(γs

Γ

)n 1

n!

■ At high SNR (Γ → ∞)

Pout ∝
(

1

Γ

)N

■ Similarly, bit error rate:

BER =

∫ ∞

0

[BER/γout] f(γout)dγout ∝
(

1

Γ

)N

Γ → ∞
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Performance: Outage Probability
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Performance: Bit Error Rate
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Diversity Order
■ A fundamental parameter of diversity-based systems

■ Several times now we have seen that in the high-SNR regime

BER or Pout ∝
(

1

Γ

)N

⇒ − log(BER)

log Γ
= N (at high SNR)

■ i.e., at high SNR the slope of the curve in a log-log plot is N

◆ this is the informal definition of diversity order
◆ simulations show that SNR need not be very high for this

to hold
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Diversity Order (cont...)
■ Formal definition: The diversity order , D, is defined as

D = lim
SNR→∞

− log BER
log SNR

The diversity order measures the number of independent
paths over which the data is received

■ Can also use Pout in the definition

■ Diversity order is (formally) a high-SNR concept

■ Provides information of how useful incremental SNR is

■ Sometimes diversity order is abused:
◆ the high-SNR definition masks system inefficiencies
◆ Note: both selection and maximal ratio combining have

the same diversity order
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The Gains are not due to SNR
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the same, the BER is significantly different.



Introduction and Overview

Basic Digital Communications

Basic Wireless Communications

Receive Diversity

● Introduction

● Diversity Types

● Selection Combining

● Maximal Ratio Combining

● Diversity Order

● Equal Gain Combining

● Comparing Schemes

● Summary

● Correlation

Transmit Diversity

MIMO Information Theory

Course Summary

END

Waveform Diversity and Design Conference, Slide #42

Equal Gain Combining
■ MRC requires matching of both phase and magnitude

◆ Magnitude can fluctuate by 10s of dB
◆ Biggest gains are by the coherent addition

■ Equal Gain Combining: only cancel the phase of the channel

wn = ej∠hn

■ And so...

Output Signal = y = wHx =
N
∑

n=1

w∗
nxn

= s

[

N
∑

n=1

|hn|
]

+ noise

■ ...resulting in a small loss in SNR...

Average Output SNR =
[

1 + (N − 1)
π

4

]

Γ
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Comparing Diversity Schemes

Bit error rate:
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Note: MRC and EGC have similar performance
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Comparing Diversity Schemes (cont...)

Gains in SNR:
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Comparing Diversity Schemes (cont...)
■ All these diversity schemes have same diversity order
■ “Work” by reducing fluctuations in overall channel
■ Selection Combining

◆ Simple to implement; only requires power measurement
◆ Gain in SNR = ln(N)

■ Maximal Ratio Combining
◆ Optimal in SNR sense

◆ Gain in SNR = N

◆ Requires knowledge of channel and matching over
several 10s of dB

◆ Easiest to analyze

■ Equal Gain Combining
◆ Small loss w.r.t. MRC
◆ Very difficult to analyze, but may be a good trade off for

implementation
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In Summary...

Diversity is based on providing the receiver with multiple
independent copies of the same signal

■ The key is the independence between the copies of the
same signal

◆ The independence makes the gains in error rates
exponential with linear gains in number of elements

So, the question is ....under what circumstances can we
assume independence?
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The Issue of Correlation
■ Correlation between the received signals reduces the

independence and hence the effective diversity order

■ The extreme case: if all elements were perfectly correlated
(e.g., line of sight conditions), diversity order = 1 (only SNR
gains)

For two receive antennas, with correlation of ρ:

f(γout) =
1

2|ρ|Γ
[

e−γout/(1+|ρ|Γ) − e−γout/(1−|ρ|Γ)
]

Pout(γs) = 1 − 1

2|ρ|
[

(1 + |ρ|)e−γs/(1+|ρ|Γ)

− (1 − |ρ|)e−γs/(1−|ρ|Γ)
]

■ Correlation arises because
◆ Electromagnetic Mutual Coupling

◆ Finite distance between elements
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Impact of correlation : Outage Probability
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Mutual Coupling

Z
L ZL ZL

Voc = [Z + ZL]Z−1
L V

■ Z: A mutual impedance matrix

■ ZL: Diagonal load matrix

■ Voc: Open circuits voltages that would arise without mutual
coupling

■ V: True received voltages
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Correlation due to Distance
■ If spacing between elements is d and signal arrives from

direction (θ, φ) only, correlation is given by

ρ(θ, φ) = ejkd cos φ sin θ,

where k = 2π/λ

■ Total correlation is therefore averaged over angular power
distribution

ρ = E{ρ(θ, φ)} =

∫ π

0

∫ 2π

0

ejkdcosφ sin θfΘ,Φ(θ, φ)dφ dθ,

where fΘ,Φ(θ, φ) is the power distribution of the received
signals over all angles

■ So, the angular distribution is crucial
◆ Depends on where the receiver is

■ at the mobile or the base station
■ the base station “looks down” on the mobile
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Correlation at the Mobile
■ The mobile is (usually) surrounded by many scatterers

■ In a dense multipath environment

fΘ,Φ(θ, φ) =
1

2π
δ(θ − θ0)

ρ =

∫

θ,φ

1

2π
δ(θ − θ0)e

jkdcosφ sin θdθdφ

= J0(kd sin θ0)

■ θ0 = π/2,⇒ ρ < 0.5 if d > 0.24λ

◆ Required distance increases as θ0 decreases
◆ Rule of thumb: d ≥ λ/2

◆ At 1GHz, λ = 30cm, i.e., received signals independent if
d > 15cm
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Correlation at a Base Station

φ
−

R

D
β

Mobile

BS

■ Signal arrives from a small angular region surrounding the
mobile

ρ =

∫ βmax

−βmax

e−jkd cos(φ̄+β) sin θ0fB(β)dβ,
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Correlation at a Base Station (cont...)
■ Array along x-axis

■ For a uniform disk of scatterers, φ̄ = π/2

ρ =
2J1(kd sinβmax sin θ0)

kd sinβmax sin θ0
.

■ R = 1.2km, D = 50m, θ0 = 80o ρ < 0.5 for d > 9λ

◆ At 1GHz, received signals independent if d > 2.7m
(approx. 9ft.)

The required distance is therefore determined by the array
setting
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Transmit Diversity
■ So far, we had a SIMO situation: a single transmitter and

multiple receivers

◆ Achieving diversity was relatively easy: each receiver
receives a copy of the transmitted signal
■ multiple receivers ⇒ multiple copies

■ What about the MISO situation?
◆ Very useful in the expected asymmetrical communication

scenarios with more traffic from base station to mobile

■ Base station is expensive, has more space, has multiple
antennas

■ Mobile is cheap, has little space, has one antenna

■ Users are downloading information, e.g., a webpage
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Transmit Diversity (cont...)
■ MISO: N transmit antennas, one receive antenna

■ Transmit diversity requires the time dimension. To see this,
consider if we did not use the time dimension. Each transmit
antenna transmits symbol s.

Received Signal = x =
N
∑

n=1

hns + noise

= hs + n

where h =
N
∑

n=1

hn

■ Received signal is a scalar, there is no diversity here!!
◆ And hence the concept of space-time coding
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Space-Time Coding
■ Simple example: Transmit the same symbol over two time

slots (symbol periods)

◆ On time slot 1, antenna n = 1 transmits symbol s

x1 = h1s + n1

◆ On time slot 2, antenna n = 2 transmits the same symbol s

x2 = h2s + n2

■ At the receiver form a receive vector over the two time slots

x =

[

x1

x2

]

=

[

h1

h2

]

s +

[

n1

n2

]

= hs + n

■ Maximum Ratio Combining:

y = hHx =
(

|h1|2 + |h2|2
)

s + noise

and we would get order-2 diversity
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The (Famous) Alamouti’s Code
■ The previous scheme “wastes” half the time

■ A more efficient approach: consider two symbols s1 and s2

■ In the first time slot,
antenna n = 1 transmits s1 and antenna n = 2 transmits s2

x1 = h1s1 + h2s2 + n1

■ In the second time slot,
antenna n = 1 transmits −s∗2 while antenna n = 2 transmits s∗1

x2 = −h1s
∗
2 + h2s

∗
1 + n2

■ One subtle, but important point: each element transmits with
half the available power

■ Form the received data vector (note the conjugate on x2)

x =

[

x1

x∗
2

]

=

[

h1 h2

h∗
2 −h∗

1

][

s1

s2

]

+

[

n1

n∗
2

]
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Alamouti (cont...)

Now work with x

x = H

[

s1

s2

]

+ n

y = HHx = HHH

[

s1

s2

]

+ noise

=

[

|h1|2 + |h2|2 0

0 |h1|2 + |h2|2

][

s1

s2

]

+ noise

i.e.,
y1 =

(

|h1|2 + |h2|2
)

s1 + noise

y2 =
(

|h1|2 + |h2|2
)

s2 + noise

⇒ we get order-2 diversity on both symbols!!

The key is that the effective channel matrix is orthogonal
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Alamouti Code : Performance
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Note: the diversity order of the Alamouti scheme and 2-branch
receive diversity is the same. Alamouti’s scheme suffers a 3dB
loss because of the power splitting
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Code Design Criteria: What Makes a Code Good?
■ Alamouti’s scheme is a space-time code

◆ A careful organization of data (or a function of the data) in
space and time

■ Alamouti’s scheme is specific to two transmit antennas...
◆ ...and, unfortunately, cannot be generalized to N > 2

■ Consider a code with K symbols over N antennas and L
time slots (code rate R = K/L)

C =













c11 c12 · · · c1L

c21 c22 · · · c2L

...
...

. . .
...

cN1 cN2 · · · cNL













■ here, cnl is a function of the K symbols transmitted in time
slot l using antenna n

◆ e.g., in the Alamouti scheme, c12 = −s∗2
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Design Criteria (cont...)
■ We want to minimize error rate, the probability that codeword

C was transmitted and C̃ was decoded

P (C → C̃) ≤ exp

[

−d2
(

C, C̃
) Es

4σ2

]

■ Es is the available energy, Γ = Es/σ
2

■ d
(

C, C̃
)

is the effective “distance” between C and C̃

d2
(

C, C̃
)

= hHEEHh

E =













c11 − c̃11 c12 − c̃12 · · · c1L − c̃1L

c21 − c̃21 c22 − c̃22 · · · c2L − c̃2L

...
...

. . .
...

cN1 − c̃N1 cN2 − c̃N2 · · · cNL − c̃NL













■ h = [h1, h2, . . . hN ]
T is the channel vector
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Design Criteria (cont...)

E =













c11 − c̃11 c12 − c̃12 · · · c1L − c̃1L

c21 − c̃21 c22 − c̃22 · · · c2L − c̃2L

...
...

. . .
...

cN1 − c̃N1 cN2 − c̃N2 · · · cNL − c̃NL













■ Tarokh et al. developed two design criteria based on this
error matrix:
◆ The Rank Criterion: The maximum diversity order is

achieved if the rank of the error matrix is maximized (N )
■ If M receiving antennas, total diversity order available is

NM

◆ The Determinant Criterion: The error rate is minimized if
the determinant of EEH is maximized over all code pairs
C, C̃
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Examples of Space-Time Codes
■ Space-Time Trellis Codes: Design a trellis code over space

and time

■ Orthogonal Block Codes: Codes in which each symbol can
be independently decoded
◆ Independent decoding is very convenient

◆ Alamouti’s code is orthogonal for N = 2

◆ Rate-1 orthogonal codes cannot exist for N > 2

◆ Rate-1/2 orthogonal codes are always available
■ rate-3/4 codes are available for N = 3, 4, e.g.,

G3 =











s1 s2 s3

−s2 s1 −s4

−s3 s4 s1

−s4 −s3 s2











,
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Examples of Codes (cont...)
■ Linear Dispersion Codes: Minimize error based on mutual

information directly, not the design criteria

■ Codes based on algebra: Algebraic codes, e.g., TAST etc.

■ In all cases, space-time codes provide diversity by giving the
receiver independent copies of the same message

So far we have focused on diversity order (reliability) only.

What about data rate?
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Space-Time Coding and Multiplexing
■ Transmit more than one data stream (multiplexing)

◆ Requires multiple receive antennas as well

■ Instead of transmitting only a single data stream, transmit Q
data streams in parallel.

■ M receive, N transmit antennas. Divide the transmit
antennas into Q groups, N = N1 + N2 + . . .NQ

◆ Data stream q uses Nq antennas

x = Hc + n,

=













h11 h12 · · · h1N1
h1(N1+1) · · · h1N

h21 h22 · · · h2N1
h2(N1+1) · · · h2N

...
... · · ·

...
...

. . .
...

hM1 hM2 · · · hMN1
hM(N1+1) · · · hMN

























c1

c2

...
cQ













+n
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STC and Multiplexing (cont...)

■ The qth data stream uses a space-time code over Nq

antennas

■ How do you isolate individual streams?

x = H1c1 + H̄1













c2

c3

...
cQ













+ n

■ Now, let H⊥
1 be the null space of H̄1 (H⊥H

1 H̄1 = 0)

◆ this is possible if M > N − N1. H⊥
1 is size

M × (M − N + N1)

y1 = H⊥H
1 x =

[

H⊥H
1 H1

]

c1 + noise

which is a space-time coded system with N1 transmitters
and (M − N + N1) receivers
◆ Diversity order = N1 × (M − N + N1)
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Multiplexing (cont...)
■ Clearly we can apply the same idea for q = 2, . . . , Q

◆ Data stream q would achieve diversity order of
Nq × (M − N + Nq).

■ Can we do better? Yes!! Use interference cancellation...
◆ ...since c1 has been decoded, subtract it!
◆ Data stream 2 “sees” less interference (N1 interfering

transmissions are eliminated). Stream 2 can get diversity
order of N2 × (M − N + N2 + N1)

◆ Similarly, the qth data stream can achieve diversity order

of Nq ×
(

M − N +
∑q

p=1 Np

)

■ BLAST: Bell Labs Layered Space-Time
◆ Nq = 1

◆ Requires M ≥ N (at least as many receivers as
transmitters)

◆ Achieved (in lab) spectral efficiency of 10s of b/s/Hz!
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In Summary...
■ Transmit diversity requires the time dimension

◆ Space-time coding is the careful arrangement of data (or
function of data) in space and time to achieve
■ Greatest diversity order (rank criterion)
■ Minimum error rate (determinant criterion)

■ Several space-time code families are available
◆ We focused on the simplest family of orthogonal

space-time block codes

■ Can also use the spatial degrees of freedom to multiplex
◆ BLAST is one (famous) example



Introduction and Overview

Basic Digital Communications

Basic Wireless Communications

Receive Diversity

Transmit Diversity

MIMO Information Theory

● Basics

● Unknown Channel

● Known Channel

● Waterfilling

● MIMO Systems

● Examples

● Summary

● DMT

Course Summary

END

Waveform Diversity and Design Conference, Slide #69

MIMO Information Theory
■ We wish to investigate the fundamental limits of data transfer

rate in MIMO wireless systems

■ Remember:
◆ A channel is fundamentally characterized by (and the data

rate limited by) its capacity C

◆ In the SISO case,

C = log2(1 + SNR)

■ Our MIMO system: N transmit and M receive antennas

y = Hx + n

■ y: the length-M received signal vector

■ H: the M × N channel

■ x: The length-N transmit data vector

◆ Let Sx = E{xxH} be the covariance matrix of x
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Channel Unknown at Transmitter
■ It is not too hard to show

C = log2 det

[

I +
1

σ2
HSxH

H

]

■ If channel H is known at the transmitter, Sx can be chosen to
best match the channel

■ However, let’s start with the case that the channel is not
known. The best choice is

Sx =
Es

N
IN×N

⇒ C = log2 det

[

I +
1

σ2

Es

N
HHH

]

■ Since H is not known, again, one cannot guarantee a data
rate and the true capacity is zero!
◆ Again, talk of an outage probability and/or expected

capacity
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Unknown Channel (cont...)

C = log2 det

[

I +
1

σ2

Es

N
HHH

]

■ Since we are assuming Rayleigh fading, the entries of H are
complex Gaussian

◆ Experts in STAP will recognize HHH as following the
Wishart distribution

■ Let the eigenvalues of HHH be λ2
m, m = 1, 2, . . . , M

Eigenvalues of
[

I + Es/(Nσ2)HHH
]

=

(

1 +
Es

(Nσ2)
λ2

m

)
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Unknown Channel (cont...)

C = log2

M
∏

m=1

(

1 +
Es

Nσ2
λ2

m

)

=

M
∑

m=1

log2

(

1 +
Es

Nσ2
λ2

m

)

■ The distribution of λm is known (HHH is Wishart)
◆ Without ordering, these eigenvalues are independent and

identically distributed

◆ There are r = min(M, N) eigenvalues

■ Therefore, on average

E{C} = E{λm}

{

M
∑

m=1

log2

(

1 +
Es

Nσ2
λ2

m

)

}

= min(N, M)Eλ

{

log2

(

1 +
Es

Nσ2
λ2

)}

■ We get linear gains in capacity, not just power gains
◆ As if we have min(N, M) parallel channels!



Introduction and Overview

Basic Digital Communications

Basic Wireless Communications

Receive Diversity

Transmit Diversity

MIMO Information Theory

● Basics

● Unknown Channel

● Known Channel

● Waterfilling

● MIMO Systems

● Examples

● Summary

● DMT

Course Summary

END

Waveform Diversity and Design Conference, Slide #73

Unknown Channel: Ergodic Capacity

Note: Ergodic capacity for fixed SNR (from Telatar (1999)).
Here r is the number of elements in the transmitter and
receiver (r = M = N )
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Unknown Channel: 1-(Outage Probability)

Note: “Success” rates (probability that capacity is above target)
from Foschini and Gans (1998). Comparing “success” rates for
SISO and a N = M = 2 system.
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Channel Known at the Transmitter
■ What if the channel is known at the transmitter?

◆ Usually obtained via feedback (frequency division duplex -
FDD) or via reciprocity (TDD)

◆ The transmitter can tune the covariance matrix Sx to
match the transmitter

◆ This may be via power allocation

Sopt
x = max

Sx

C

= max
Sx

log2 det

[

I +
1

σ2
HSxH

H

]

Constraints: Sx must be positive-definite

Sx must satisfy a power constraint

■ So, how do you optimize over a matrix?
◆ Let’s start with a simpler (and very instructive) system:

parallel channels
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Parallel Channels

1

2

3

N

■ Each channel is independent of the other

■ On the nth channel

yn = hnxn + noise

■ The transmitter has one important constraint - a total
available energy constraint of Es

◆ Since the transmitter knows the channel values,
hn, n = 1, 2, . . . , N it can allocate power to maximize the
overall capacity
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Parallel Channels (cont...)
■ The transmitter allocates power En to channel n

C =
N
∑

n=1

log2

(

1 + |hn|2
En

σ2

)

■ Intuitively, the transmitter should allocate all its power to the
strongest channel, right?
◆ Strangely enough, “wrong”!

■ This is because...

C = log (1 + SNR)

■ At high SNR, C ∼ log (SNR)

■ At low SNR, C ∼ SNR
◆ There are diminishing marginal returns in allocating power
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Parallel Channels (cont...)

The problem formulation:

{

Eopt
n

}

= max
{En}

N
∑

n=1

log2

(

1 +
En|hn|2

σ2
n

)

N
∑

n=1

En ≤ Es

En ≥ 0

The solution:
(

σ2

|hn|2
+ En

)

= µ, n = 1, . . . , N

En =

(

µ − σ2

|hn|2

)+

,

where (x)+ = 0 if x < 0 and (x)+ = x if x ≥ 0
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Waterfilling
■ Note that µ is a constant

■ Channel sees an “effective” noise variance of σ2
n = σ2/|hn|2

Power Level: Difference

Channels 1 to N

■ Note that the better channels do get more power

■ Some channels are so “bad” that they do not get any power
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MIMO Systems with Known Channel
■ So far, we have focused on parallel channels.

So far, y =













h1 0 · · · 0

0 h2 · · · 0
...

...
. . .

...
0 0 · · · hN













x + n

■ What does this tell us about a “regular” MIMO system?

■ We have
y = Hx + n

■ N transmitters, M receivers, H is the M × N channel

H =













h11 h12 · · · h1N

h21 h22 · · · h2N

...
...

. . .
...

hM1 hM2 · · · hMN












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MIMO Systems (cont...)
■ One can use the singular value decomposition of H

H = UΣVH

■ U is the matrix of eigenvectors of HHH

■ V is the matrix of eigenvectors of HHH

■ Σ is a “diagonal” M × N matrix of singular values

Σ =























σ1 0 · · · 0 0 0

0 σ2 · · · 0 0 0
...

...
. . .

...
. . .

...
0 0 · · · σR 0 0

0 0 · · · 0 0 0

0 0 · · · 0 0 0























,

■ R is the rank of H

■ The zeros pad the matrix to match the M × N dimensions
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MIMO Systems (cont...)
■ How does this help? We have

UUH = UHU = IM×M

VVH = VHV = IN×N

y = Hx + n

= UΣVHx + n

⇒ UHy = ΣVHx + UHn

■ ỹ = UHy, x̃ = VHx, ñ = UHn

ỹ = Σx̃ + ñ

■ We have a set of R parallel channels!
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MIMO Systems (cont...)

Therefore,

Channel

H

S/P

R outputs

V

N-R  zeros

N outputs

U

M inputs

H
Decoder

x
~

y
~

x y

data
data Power

Allocation

R outputs

■ The transmitter precodes the transmitted signal using matrix
V. This matches the transmission to the “eigen-modes” of
the channel

■ The transmitter also waterfills over the singular values σn as
the equivalent channel values as parallel channels (called hn

earlier)

■ The receiver decodes using the matrix U

■ IMPORTANT: This diagonalization process (transmission on
eigen-modes is a fundamental concept in wireless
communications
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Improvement in Capacity
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Comparing capacities for N = M = 4
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Some Illustrative Examples
■ Example 1: SIMO System, 1 transmitter, M receivers

H = h =













h1

h2

...
hM













⇒ U =

[

h

||h|| h⊥

]

V = [1]

Σ = [||h||, 0, . . . , 0]T

■ Note that we have only a single “parallel” channel

C = log2

(

1 +
Es

σ2
||h||2

)

■ Effectively, all channel powers added together
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Some Illustrative Examples (cont...)
■ Example 2: MISO System, N transmitters, 1 receiver

H = h = [h1, h2, . . . , hN ]

⇒ U = [1]

V =

[

h

||h|| h⊥

]

U = [1]

Σ = [||h||, 0, . . . , 0]
■ Again we have only a single “parallel” channel

C = log2

(

1 +
Es

σ2
||h||2

)

■ This is the same as the SIMO case!

■ Note: without channel knowledge,

C = log2

(

1 +
Es

Nσ2
||h||2

)
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Some Illustrative Examples (cont...)
■ Example 3: MIMO System, line of sight conditions

s(φr) =
[

1, zr, z
2
r , . . . , zM−1

r

]T
, zr = ejkdr cos φr

s(φt) =
[

1, zt, z
2
t , . . . , zN−1

t

]T
, zt = ejkdt cos φt

H = s(φr) ⊗ sT (φt)

=













1 zt z2
t · · · zN−1

t

zr zrzt zrz
2
t · · · zrz

N−1
t

...
...

...
. . .

...
zM−1
r zM−1

r zt zM−1
r z2

t · · · zM−1
r zN−1

t













■ This is a rank-1 matrix!
◆ This one singular value = σ1 =

√
NM

C = log2

(

1 +
Es

Nσ2
NM

)

= log2

(

1 +
Es

σ2
M

)
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Some Illustrative Examples (cont...)
■ Example 4: MIMO System, M = N , rich scattering

conditions, full rank channel

◆ We have N parallel channels

■ For convenience, assume all singular values are equal
◆ Let this singular value = σ1

◆ Since all parallel channels are equally powerful, power
allocation is uniform

C =
N
∑

n=1

log2

(

1 +
Es

Nσ2
σ2

1

)

= N log2

(

1 +
Es

Nσ2
σ2

1

)

■ Note the huge difference from “line of sight” scenario

◆ The number of transmit or receive elements is outside the
log term; we get linear gains in capacity

If N 6= M C = min(N, M) log2

(

1 +
Es

Nσ2
σ2

1

)
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Summary of Information Theoretic Analysis
■ MIMO systems allow for huge increases in capacity

◆ If the fading is independent then one can achieve linear
gains in capacity over the SISO case

◆ Notice that this inherently requires the concept of a
diversity of paths

■ The concept of diagonalization or transmission on
eigen-channels and the associated concept of waterfilling
are fundamental

■ Waterfilling allocates more power to better channels
◆ Note that this is, initially, counter-intuitive. Generally, if we

have a poor channel, we add power, not reduce power
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Diversity-Multiplexing Tradeoff

Consider a system with N transmit and M receive antennas in
a rich scattering, Rayleigh fading environment

■ Diversity: We have seen that through space-time coding and
receive diversity we can achieve a diversity order of NM .

■ Multiplexing: In the information theoretic analysis we saw
that we could get a pre-log factor of min(M, N). Also, at high
SNR

C → min(M, N) log2(SNR)

Q: Can we get both diversity and multiplexing (rate) gains?

A: Yes! But, there is a trade-off between the two!
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DMT (cont...)
■ As before, define the diversity order as:

D = lim
SNR→∞

[

log Pout

log SNR

]

◆ D tells us how fast the error rate falls with increases in
log(SNR)

■ Define a multiplexing gain r as

r = lim
SNR→∞

[

R

log SNR

]

◆ R is the rate of transmission

◆ r is the rate at which the transmission rate increases with
log(SNR)
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DMT (cont...)
■ Diversity Multiplexing Tradeoff: The optimal tradeoff curve,

d⋆(r) is given by the piecewise-linear function connecting the
points (r, d⋆(r)), r = 0, 1, . . . , min(M, N), where

d⋆(r) = (M − r)(N − r)

■ Note: dmax = MN and rmax = min(M, N).

■ At integer points, r degrees of freedom are used for
multiplexing, the rest are available for diversity




Note the linear interpolation 


between integer points
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Course Summary
■ We have explored uses of the spatial dimension in wireless

communications

■ Performance of wireless systems is fundamentally limited by
fading
◆ Fading makes the received signal to be a random copy of

the transmitted signal
◆ MIMO systems are based on independent fading to/from

multiple elements

■ We covered three major concepts:
◆ Receive Diversity
◆ Transmit Diversity

◆ MIMO Information Theory

■ Receive Diversity:
◆ Selection, maximal ratio and equal gain combining

■ Trade off between complexity and performance
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Course Summary (cont...)
■ Receive Diversity (cont...)

◆ Notion of diversity order
■ Measures the number of independent paths the signal is

received
◆ Impact of correlation

■ Array elements must be some minimum distance apart
■ The key is to create independence

■ Transmit Diversity:
◆ Requires the time dimension: space-time coding
◆ An important example of block codes: Alamouti’s Code

■ Unfortunately, only rate 1/2 codes are guaranteed for
complex data constellations

◆ Good codes designed using the rank and determinant
criteria
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Course Summary (cont...)
■ Multiplexing:

◆ Transmitting multiple data streams simultaneously
◆ Can combine space-time coding with multiplexing

■ A famous example: the BLAST scheme

■ We should emphasize that this is only one possible
multiplexing scheme

■ MIMO Information Theory:
◆ Capacity via determinant of channel
◆ Ergodic capacity and outage probability if channel is

unknown

◆ Transmission on eigen-channels and using waterfilling if
channel is known to transmitter
■ Creates r = rank (H) parallel channels

◆ There is a fundamental trade-off between diversity and
multiplexing
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We could have done so much more...
■ Channel Estimation: Throughout we assumed the receiver

knows the channel

◆ The receiver has to estimate and track a time varying
channel

■ Frequency selective channels: We focused on flat channels,
frequency selectivity is becoming important
◆ Everyone assumes 4G will be based on OFDM -

MIMO-OFDM is a “hot” topic

■ Error control coding to achieve the capacity of MIMO
systems

■ Feedback to inform the transmitter of the channel
◆ Low data rate schemes, error bounds, impact of error
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What else? (cont...)
■ Multiuser Communications: Transmitting to/receiving from

multiple users simultaneously

◆ Is another form of multiplexing; requires interference
cancellation, provides flexibility

◆ Is getting more important, both theoretically and in
implementation

■ Cooperative Communications:
◆ Probably the “hottest” research area now
◆ Nodes with a single antenna share resources to act like a

MIMO system
■ via relaying, forwarding, cooperative diversity

◆ Especially applicable to the new “modern” kinds of
networks. Also, distributed signal processing.
■ Sensor Networks: Large scale networks of small, cheap

nodes
■ Mesh Networks: Networks of access points
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END

That all folks!

Again, detailed notes available at

http://www.comm.utoronto.ca/˜ rsadve/teaching.html
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